选择子网络的飞机恢复问题模型改进研究  

Research on Model Improvement for Aircraft Recovery Based on Sub-Network Selection

在线阅读下载全文

作  者:陈斌斌 Binbin Chen(School of Economics and Management,Tongji University,Shanghai)

机构地区:[1]同济大学经济与管理学院,上海

出  处:《运筹与模糊学》2024年第6期982-989,共8页Operations Research and Fuzziology

摘  要:本文分析选择子网络的飞机恢复方法的缺陷,即非目标不正常航班可能导致额外的航班取消。针对该缺陷,本文对经典飞机恢复模型进行改进,增加虚拟航班的概念以减小非目标不正常航班的影响。最后,本文使用机器学习选择子网络并滚动求解,对改进模型的效果进行测试。实验结果对经典模型和改进模型的结果进行对比,显示出改进模型在减少航班取消数量上的显著优势。This paper analyzes the deficiency of aircraft recovery methods that employ sub-network selection,namely,the potential for non-target irregular flights to result in additional flight cancellations.To address this deficiency,this paper proposes an improvement to the classic aircraft recovery model by introducing the concept of virtual flights to mitigate the impact of non-target irregular flights.Finally,this paper utilizes machine learning to select sub-networks and employs a rolling approach to recover the whole network,thereby testing the effectiveness of the improved model.Experimental results comparing the outcomes of the classic model and the improved model demonstrate the significant advantage of the latter in reducing the number of flight cancellations.

关 键 词:飞机恢复问题 不正常航班恢复 子网络 运筹优化 机器学习 

分 类 号:F56[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象