检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋赫轩 郑卫芳[1] 李传博[1] Song Hexuan;Zheng Weifang;Li Chuanbo(China Institute of Atomic Energy,Beijing 102413,China)
出 处:《广东化工》2025年第1期47-50,共4页Guangdong Chemical Industry
摘 要:多相流搅拌流场作为一种复杂的流场状态常常难以拟合,但其作为一个常见的流体状态广泛存在于化工、冶金、制药等诸多工艺生产中。神经网络具备强大的拟合能力刚好可以对传统方法难以拟合的复杂流场状态进行拟合。本文采用新型的WGAN-GP网络架构,成功对传统BP神经网络线性结构无法拟合的多相流搅拌流场进行拟合,最终流场参数相对误差仅为2%左右。证明了BP神经网络具备充分的针对多相流搅拌流场的拟合能力,即简单的网络结构依然具备较强的拟合能力,为之后的复杂流场拟合提供了一种计算速度快、消耗资源少的计算思路。As a complicated flow field,it is always difficult to fit,but as a common fluid state,it is widely used in chemical,metallurgical,pharmaceutical and other processes.The neural network has strong fitting ability and can fit the complicated flow field state which is difficult to fit by traditional methods.In this paper,a new WGAN-GP network architecture is used to successfully fit the stirred flow field of multiphase flow,which cannot be fitted by the linear structure of the traditional BP neural network.The relative error of the final flow field parameters is only about 2%.It is proved that the BP neural network has sufficient fitting ability for the stirred flow field of multiphase flow,that is,the simple network structure still has strong fitting ability,which provides a calculation idea for the complex flow field fitting with fast computing speed and less resource consumption.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222