人工智能应用于多发性肺结节诊断的研究进展  

Progress in application of artificial intelligence in diagnosis of multiple pulmonary nodules

在线阅读下载全文

作  者:孙铭远 褚恒 徐海滨[3] 张哲[2] Sun Mingyuan;Chu Heng;Xu Haibin;Zhang Zhe(School of Clinical Medicine,Shandong Second Medical University,Weifang 261000,China;Department of Thoracic surgery,Qingdao Municipal Hospital,Qingdao 266011,China;Department of Imaging,Qingdao Municipal Hospital,Qingdao 266011,China)

机构地区:[1]山东第二医科大学临床医学院,山东潍坊261000 [2]青岛市市立医院胸外科,山东青岛266011 [3]青岛市市立医院影像科,山东青岛266011

出  处:《中华临床医师杂志(电子版)》2024年第8期787-792,共6页Chinese Journal of Clinicians(Electronic Edition)

基  金:国家自然科学基金项目(22204152)

摘  要:肺癌,作为世界范围内发病率和死亡率最高的恶性肿瘤之一,早期影像学表现为肺结节。其中,多发性肺结节因其逐年增高的检出率和特殊性而受到广泛关注。因此对肺结节性质进行正确预测是肺癌早期诊治的关键。近年来,人工智能(artificial intelligence,AI)技术与医学的结合在肺结节的诊断方面有了很大的进展,特别是通过深度学习、机器学习、放射组学等技术对肺结节的特征和性质进行分析及预测。这些方法极大地提高了肺癌早期筛查的效率和准确性,对肺癌的诊治具有重要的指导作用。本文综述了AI应用于肺结节诊断的进展,尤其是多发性肺结节,并分析了AI技术目前的优势和不足以及未来的发展方向,以期为多发性肺结节的诊治提供新思路、新方法。Lung cancer is a malignancy with the highest incidence and mortality rates worldwide,and the early-stage imaging findings of lung cancer are often pulmonary nodules.Multiple pulmonary nodules have attracted great attention due to their increasing detection rate and high specificity.Thus,accurate prediction of the nature of pulmonary nodules is crucial for early diagnosis and treatment of lung cancer.In recent years,there have been great improvements in the diagnosis of pulmonary nodules due to the integration of artificial intelligence(AI)into medical technologies,particularly the application of deep learning,machine learning,and radiomics to analyze and predict the features and nature of pulmonary nodules.These approaches have dramatically enhanced the efficiency and accuracy of early screening for lung cancer,offering important guidance for the diagnosis and treatment of this malignancy.This article reviews the progress in AI application in the diagnosis of pulmonary nodules,especially in multiple pulmonary nodules,and analyzes the current advantages and limitations of AI technology as well as future development directions,aiming to provide new ideas and methods for the diagnosis and treatment of multiple pulmonary nodules.

关 键 词:人工智能 多发性肺结节 深度学习 机器学习 放射组学 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象