基于双粒度的小麦问句分类模型研究  

Research on Wheat Question Classification Model Based on Dual-Granularity

在线阅读下载全文

作  者:赵新玥 陈美凤 张静[1] 王静茹 宋云胜 Zhao Xinyue;Chen Meifeng;Zhang Jing;Wang Jingru;Song Yunsheng(School of Information Science and Engineering,Shandong Agricultural University,Taian 271018,China;Huang Huaihai Key Laboratory of Intelligent Agriculture Technology Ministry of Agriculture and Rural Affairs,Taian 271018,China)

机构地区:[1]山东农业大学信息科学与工程学院,山东泰安271018 [2]农业农村部黄淮海智慧农业技术重点实验室,山东泰安271018

出  处:《南京师大学报(自然科学版)》2025年第1期100-108,共9页Journal of Nanjing Normal University(Natural Science Edition)

基  金:山东省自然科学基金面上项目(ZR2020MF146)。

摘  要:针对现阶段小麦问答社区的问句文本存在噪声、特征稀疏以及专业性强等问题,从词和字双粒度特征出发,提出了一种基于双粒度的小麦问句分类模型.为有效缓解农业问句语义特征稀疏的问题,采用基于字粒度和词粒度的双分支架构,并引入交互注意力机制获取词粒度和字粒度交互特征信息以实现不同粒度信息表达文本语义的一致性,最后融合双粒度特征及其交互特征构建分类模型.同时,在输入层添加农业字典和加载停用词表进行分词和分字,有效解决小麦社区问句文本专业性强和数据噪声问题.与现有六种主流农业社区问句分类模型相比,该模型在整体分类性能上表现最优,且在各类别上综合性能优于其他模型.本研究有助于提高小麦种植社区问答系统的性能,并积极推动智能农业推广进程、助力乡村振兴.In response to the issues of noise,feature sparsity,and strong agricultural expertise in the question texts of the current wheat Q&A community,a wheat question classification model based on dual-granularity features is proposed.To effectively alleviate the problem of semantic feature sparsity in agricultural questions,a dual-branch architecture is employed,extracting both character-level and word-level features in separate branches.An interactive attention mechanism is introduced to capture the interaction between word-level and character-level features,ensuring the consistency of semantic representation across different granularities.Finally,the model integrates character-level,word-level,and their interactive features to construct a robust classification framework.Additionally,an agricultural dictionary and a stop words list are incorporated at the input layer to enhance word segmentation and character splitting,addressing the challenges of high domain specificity and data noise in wheat community question texts.Compared to six existing mainstream agricultural community question classification models,this model demonstrates superior overall classification performance and improved comprehensive performance across various categories.This research contributes to enhancing the performance of question-and-answer systems in wheat farming communities and actively promotes the advancement of smart agriculture,support rural revitalization efforts.

关 键 词:小麦社区问答 多尺度卷积 注意力机制 问句分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象