检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭远顺 冉崇玉 Tan Yuanshun;Ran Chongyu(Department of Mathematics,Chongqing Jiaotong University,Chongqing 400074,China)
机构地区:[1]重庆交通大学数学与统计学院,重庆400074
出 处:《河南师范大学学报(自然科学版)》2025年第2期44-53,F0002,共11页Journal of Henan Normal University(Natural Science Edition)
基 金:国家自然科学基金(12271068);重庆市自然科学基金创新发展联合基金(CSTB2022NSCQ-LZX0026);重庆市研究生科研创新项目(2023S0134;2023ST005).
摘 要:随机扰动在传染病的传播过程中是不可避免的,为了研究这种扰动对COVID-19传播的影响,提出了一种同时具有白噪声和Lévy跳跃的随机SIVR(易感-感染-疫苗接种-康复)流行病模型.首先,通过构造合适的李雅普诺夫函数,证明了全局正解的存在唯一性;然后,通过定义随机系统的阈值,得到了疾病的灭绝和持续存在的充分条件.最后,数值模拟验证了理论分析的结果,结果表明高强度的Lévy噪声有利于快速抑制COVID-19的传播.Stochastic perturbations are inevitable in the transmission of infectious diseases.In order to examine the impact of disturbances on the spread of COVID-19,a SIVR(Susceptibility-Infection-Vaccination-Recovery)epidemic model with Lévy jumps as well as white noise is proposed in this paper.Initially,the existence and uniqueness of the global positive solution is proved by constructing a suitable Lyapunov function.Then,sufficient conditions for the extinction and persistence of the disease are obtained by defining the thresholds of the stochastic system.Finally,numerical simulations verify the results of the theoretical analysis,and the results show that the high-intensity Lévy noise is conducive to suppressing the propagation of COVID-19 rapidly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249