基于脆弱性分析的我国航空货运网络结构优化  

Structural optimization of China’s air cargo network based on vulnerability analysis

在线阅读下载全文

作  者:李艳伟[1] 陈安军 LI Yan-wei;CHEN An-jun(School of Economics and Management,Civil Aviation University of China,Tianjin 300300,China;School of Traffic Engineering and Science,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学经济与管理学院,天津300300 [2]中国民航大学交通科学与工程学院,天津300300

出  处:《计算机工程与设计》2025年第2期399-407,共9页Computer Engineering and Design

基  金:民航安全能力建设资金基金项目(SKZ49420220027)。

摘  要:为降低我国航空货运网络破坏后造成的损失,设计一种适用于航空货运网络的结构优化方案。针对货运量加权的航空货运网络进行脆弱性仿真攻击,确定最佳蓄意攻击策略,识别网络脆弱性节点、连边;根据脆弱性分析结果及航空货运网络运营特征,提出基于社区划分的“脆弱性节点复制”的网络优化思路,运用改进相似性链路预测、模块度社区划分的方法确定备选增边集合;考虑到成本问题为遗传算法适应度函数添加成本约束求解最优增边方案,对优化前后网络全局脆弱性、节点脆弱性进行仿真对比验证了优化方案的可行性。To reduce the loss caused by the destruction of China’s air cargo network,a structural optimization scheme for air cargo network was designed.The vulnerability simulation attack was carried out on the air cargo network weighted by cargo volume,and the optimal deliberate attack strategy was determined,and the network vulnerability nodes and edges were identified.According to the results of vulnerability analysis and the operation characteristics of air cargo network,the network optimization idea of vulnerability node replication based on community division was proposed,and the alternative edge augmentation set was determined using the method of improving similarity link prediction and modularity community division.Considering the cost problem,the cost constraint was added to the fitness function of the genetic algorithm,the optimal edge enhancement scheme was solved,and the global vulnerability and node vulnerability of the network before and after optimization were simulated and compared,and the feasibility of the optimization scheme was verified.

关 键 词:航空货运 脆弱性 结构优化 综合评价 链路预测 社区划分 遗传算法 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象