基于门控混合专家网络的实时相关推荐方法  

Real-time relevance recommendation method based on gated hybrid expert network

在线阅读下载全文

作  者:李鹏[1] 管紫薇 杭帆 LI Peng;GUAN Zi-wei;HANG Fan(Department of Science,Shenyang Jianzhu University,Shenyang 110000,China;School of Computer Science and Engineering,Shenyang Jianzhu University,Shenyang 110000,China)

机构地区:[1]沈阳建筑大学理学部,辽宁沈阳110000 [2]沈阳建筑大学计算机科学与工程学院,辽宁沈阳110000

出  处:《计算机工程与设计》2025年第2期515-522,共8页Computer Engineering and Design

基  金:辽宁省高等学校科研基金项目(LJZ2022029)。

摘  要:针对传统推荐模型难以实现对同一个主题的文章连续扩展的问题,提出一种基于门控混合专家网络的实时相关推荐方法。从低维稠密向量交互、语义特征相似性和不同特征字段之间的依赖程度等多个维度捕获特征作为专家网络;通过多门控制的混合专家策略和分层注意力机制,综合考虑这些专家网络;利用最终学习到的深层特征,预测推荐评分和项目点击概率,获得用户对项目的满意度。实验结果表明,与其它基线模型对比,AUC指标最多可提高0.35%,Logloss指标最多可降低0.76%,消融实验也验证了各个部分的有效性,说明了该模型的可行性与准确性。Aiming at the problem that the traditional recommendation model is difficult to realize the continuous expansion of articles on the same topic,a real-time relevant recommendation method based on gated hybrid expert network was proposed.Features were captured as an expert network from multiple dimensions such as low-dimensional dense vector interaction,semantic feature similarity and dependency degree between different feature fields.These expert networks were comprehensively considered through the hybrid expert strategy of multi-gate control and the hierarchical attention mechanism.The final learned deep features were used to predict the recommendation score and the item click probability,so as to obtain the user’s satisfaction with the item.Experimental results show that compared with other baseline models,the AUC index is improved by up to 0.35%,and the Logloss index can be reduced by up to 0.76%.Ablation experiments also verify the effectiveness of each part,and illustrate the feasibility and accuracy of the proposed model.

关 键 词:实时推荐算法 多门控制的混合专家策略 注意力机制 卷积神经网络 挤压激励网络 门控网络 语义特征相似性 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象