Integrating Image Processing Technology and Deep Learning to Identify Crops in UAV Orthoimages  

在线阅读下载全文

作  者:Ching-Lung Fan Yu-Jen Chung 

机构地区:[1]Department of Civil Engineering,Republic of China Military Academy,Kaohsiung,830,Taiwan [2]Department of Marine Science,Republic of China Naval Academy,Kaohsiung,813,Taiwan

出  处:《Computers, Materials & Continua》2025年第2期1925-1945,共21页计算机、材料和连续体(英文)

摘  要:This study aims to enhance automated crop detection using high-resolution Unmanned Aerial Vehicle(UAV)imagery by integrating the Visible Atmospherically Resistant Index(VARI)with deep learning models.The primary challenge addressed is the detection of bananas interplanted with betel nuts,a scenario where traditional image processing techniques struggle due to color similarities and canopy overlap.The research explores the effectiveness of three deep learning models—Single Shot MultiBox Detector(SSD),You Only Look Once version 3(YOLOv3),and Faster Region-Based Convolutional Neural Network(Faster RCNN)—using Red,Green,Blue(RGB)and VARI images for banana detection.Results show that VARI significantly improves detection accuracy,with YOLOv3 achieving the best performance,achieving a precision of 73.77%,recall of 100%,and reduced training time by 95 seconds.Additionally,the average Intersection over Union(IoU)increased by 4%–25%across models with VARI-enhanced images.This study confirms that incorporating VARI improves the performance of deep learning models,offering a promising solution for precise crop detection in complex agricultural environments.

关 键 词:UAV RGB image deep learning visible atmospherically resistant index CROP 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象