检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李正英 舒清态 李圣娇 蔡华诗 何海玲 马绍阳 覃朝关 魏蓉 Li Zhengying;Shu Qingtai;Li Shengjiao;Cai Huashi;He Hailing;Ma Shaoyang;Qin Chaoguan;Wei Rong(School of Forestry,Southwest Forestry University,Kunming 650224,China)
出 处:《世界林业研究》2024年第6期48-53,共6页World Forestry Research
基 金:云南省农业联合专项——重点项目“基于深度学习无人机高光谱协同LiDAR数据的云南松松材线虫早期预警研究”(202301BD070001-002);地方高校联合专项——青年项目“基于机载LiDAR协同高光谱数据的树种精细分类”(2 02101BA070001-015)。
摘 要:森林生物量是表征森林生产力和结构功能、衡量碳源和碳汇的关键指标,进行森林生物量监测有助于应对全球气候变化和森林经营可持续发展的挑战。传统的森林生物量估测方法基于实地调查,耗时耗力、成本较高。遥感技术观测范围广,能快速、精确地获取森林结构信息,具有传统估测方法不可替代的优势。多源遥感数据协同能实现不同遥感数据优势互补,打破单一传感器估测精度的局限。文中总结梳理遥感影像和激光雷达数据协同用于森林生物量估算的研究进展,分析两者协同的主要技术方法和协同效果,并针对当前研究中存在的主要问题对未来研究进行了展望。Forest biomass is a key indicator to characterize forest productivity and structural functions as well as to measure carbon source and carbon sink,and the monitoring of forest biomass helps address global change and promote sustainable forest management.The traditional method of forest biomass estimation is based on field survey,which is time-and labor-consuming and costly.Remote sensing technology is a quick and accurate way to acquire forest structure information with a wide range of observation,which possesses the advantages that cannot be replaced by traditional estimation methods.The collaborative use of multisource remote sensing data can achieve the complementary synergy of different remote sensing data and break the limitation of a single sensor in estimation accuracy.This paper summarizes the research progress in estimating forest biomass through the coordinated use of remote sensing images and LiDAR data,analyzes the main technical methods and synergistic effects of their coordination,and provides a prospect for future research on the main existant issues.
关 键 词:森林生物量 遥感影像 激光雷达 多源遥感 数据协同
分 类 号:S758.51[农业科学—森林经理学] S771.8[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.166.126