基于地基激光雷达点云估算树木材积研究进展  

Research Progress in Estimation of Tree Volume Based on Ground-based Lidar Point Clouds

在线阅读下载全文

作  者:覃朝关 舒清态 马绍阳 魏蓉 李正英 何海玲 蔡华诗 Qin Chaoguan;Shu Qingtai;Ma Shaoyang;Wei Rong;Li Zhengying;He Hailing;Cai Huashi(School of Forestry,Southwest Forestry University,Kunming 650224,China)

机构地区:[1]西南林业大学林学院,昆明650224

出  处:《世界林业研究》2024年第6期54-58,共5页World Forestry Research

基  金:国家自然科学基金项目“生态脆弱区典型森林生态系统生化参数高光谱遥感反演关键技术研究”(31860205);云南省农业联合专项重点项目“基于深度学习无人机高光谱协同LiDAR数据的云南松松材线虫早期预警研究”(202301BD070001-002)。

摘  要:近年来,随着林业资源管理和生态监测需求的持续增长,树木材积作为评估森林健康、实现森林可持续经营及估算森林碳储量的关键指标,其精确估算变得愈发重要。然而,传统测量树木材积的方法不仅实施难度大、效率低下,还会对森林造成一定损害。地基激光雷达技术作为一种先进的3D测量工具,在林业调查中展现出非破坏性、高效性、自动化等多重优势,已成为估算树木材积的有效手段。文中通过查阅国内外相关研究,探讨利用地基激光雷达技术估算树木材积各方法的优势及其存在的局限性,并对未来地基激光雷达技术在树木材积估算领域的研究应用进行了展望,旨在为进一步提升树木材积估算精确度及拓展其应用范围提供参考。In recent years,as the demand for forest resource management and ecological monitoring continues to grow,the accurate estimation of tree volume has become more and more important as a key indicator for forest health,sustainable forest management and forest carbon stock estimation.However,traditional methods of volume measurement are not only difficult to implement and inefficient,but also cause some damage to forests.Ground-based LiDAR technology,as an advanced 3D measurement tool,has become an effective means of estimating tree volume in forest surveys because of its multiple advantages of non-destructiveness,high efficiency and automation.In this paper,the advantages and limitations of applying ground-based LiDAR technology in tree volume estimation are discussed after the review of relevant studies at home and abroad,and the future research direction in the field is envisioned,aiming at providing references for further improving the accuracy of tree volume estimation and expanding the application scope.

关 键 词:树木材积 树干曲线 深度学习 体素化 定量结构模型 

分 类 号:S758.51[农业科学—森林经理学] S771.8[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象