检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:游旭[1] 陈会娟 余昭旭[1] YOU Xu;CHEN Huijuan;YU Zhaoxu(Key Laboratory of Smart Manufacturing in Energy Chemical Process of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China;Shanghai SIPAI Intelligence Systems Co.,Ltd.,Shanghai 200233,China)
机构地区:[1]华东理工大学能源化工过程智能制造教育部重点实验室,上海200237 [2]上海西派埃智能化系统有限公司,上海200233
出 处:《自动化仪表》2025年第2期51-56,共6页Process Automation Instrumentation
摘 要:为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通过LOF算法剔除数据中的异常值。然后,使用EEMD算法筛选出输入数据中强相关的特征子序列。最后,将特征子序列输入LSTM模型中以得到DO预测值。试验结果表明,LOF-EEMD-LSTM模型的准确率可达95.4%、平均绝对误差(MAE)为0.036、均方误差(MSE)为0.0038、均方根误差(RMSE)为0.0614、平均绝对百分比误差(MAPE)为0.046。以上指标相比于反向传播(BP)神经网络、随机森林、LSTM、LOF-LSTM、EEMD-LSTM和变分模态分解-最小二乘支持向量机(VMD-LSSVM)预测模型皆有明显的提升。所提模型的预测精度较高,具有较高的实用价值。In order to accurately predict the concentration value of dissolved oxygen(DO)in wastewater,five months of data from a wastewater treatment plant in Shenzhen are analyzed through the local outlier factor(LOF)algorithm.The model of ensemble empirical mode decomposition(EEMD)-long short-term memory(LSTM)neural network are used to accurately predict the concentration of DO,which is a major influence on the effluent quality of the aeration control system.Firstly,outliers in the data are removed by the LOF algorithm.Then,the EEMD algorithm is used to filter out the strongly correlated feature subsequences in the input data.Finally,the feature subsequences are input to the LSTM model to obtain the predicted values of DO.The experimental results show that the accuracy rate of the LOF-EEMD-LSTM model can reach 95.4%,the mean absolute error(MAE)is 0.036,the mean square error(MSE)is 0.0038,the root mean square error(RMSE)is 0.0614,and the mean absolute percentage error(MAPE)is 0.046.The above metrics are significant improvement that comparable to those of back propagation(BP)neural network,random forest,LSTM,LOF-LSTM,EEMD-LSTM and variational mode decomposition-least squares support vector machine(VMD-LSSVM)prediction models.The proposed model has higher prediction accuracy and has higher practical value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7