检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈亮[1,2] 孟琳书[1,2] 张音旋 王广帅[1] 曹奇凯 赵铭卓[3] 吴涛 高希光[3,4] 宋迎东[3,4,5] CHEN Liang;MENG Linshu;ZHANG Yinxuan;WANG Guangshuai;CAO Qikai;ZHAO Mingzhuo;WU Tao;GAO Xiguang;SONG Yingdong(Shenyang Aircraft Design&Research Institute,The Aviation Industry Corporation of China,Shenyang,110035,Liaoning,China;Dalian University of Technology,Dalian 116024,Liaoning,China;Nanjing University of Aeronautics&Astronautics,Nanjing 210016,Jiangsu,China;Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,Jiangsu,China;State Key Laboratory of Mechanics and Control Mechanical Structures,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,Jiangsu,China)
机构地区:[1]中国航空工业集团公司沈阳飞机设计研究所,辽宁沈阳110035 [2]大连理工大学,辽宁大连116024 [3]南京航空航天大学,江苏南京210016 [4]南京航空航天大学江苏省航空动力系统重点实验室,江苏南京210016 [5]南京航空航天大学机械结构力学及控制国家重点实验室,江苏南京210016
出 处:《陶瓷学报》2025年第1期139-149,共11页Journal of Ceramics
基 金:辽宁省博士科研启动基金计划项目(2022-BS-354);江苏省“卓博计划”;国家自然科学基金(52205161);国防基础科研计划(JCKY2019205A006)。
摘 要:针对2.5D针刺C/SiC复合材料的失效破坏进行了试验和仿真计算研究。开展了室温、500℃、1000℃无氧环境下0°层、网胎层材料的拉伸、压缩破坏试验以及2.5D针刺C/SiC复合材料的拉伸、压缩和弯曲破坏试验,并利用电子显微镜对试验件断口进行观察,分析了2.5D针刺C/SiC复合材料在不同温度下的损伤模式和失效机理。基于试验数据与观察结果,建立了通过单一铺层性能参数获取宏观针刺元件力学性能的方法,并依据多尺度理论和渐进损伤方法,借助Abaqus子程序二次开发进行了针刺C/SiC复合材料强度仿真分析。仿真预测的应力分布、失效模式与试验结果吻合较好,采用最大应变准则的强度预测精度可达94.7%,验证了分析方法在室温与高温环境下的准确性。[Background and purpose]Ceramic Matrix Composites(CMCs)represent an emerging class of materials characterized by their low density and exceptional thermal stability.They have attracted significant attention in recent years due to their remarkable performance in high-temperature environments,making them ideal candidates for use in advanced thermal structural applications.The development of CMCs is particularly notable in high-thrust-to-weight ratio aerospace engines,detonation engines,and integrated materials for thermal protection structures,where their unique properties,such as high strength-to-weight ratio,high-temperature resistance,and excellent damage tolerance,are crucial.These composites offer vast potential for improving the performance of aerospace and defense technologies,especially in scenarios where conventional materials fail to meet the stringent operational demands.However,traditional methods for testing the performance of materials,such as validation through physical tests,are inherently time-consuming,costly and not always suitable for rapid material development and research.Such approaches often require extensive trials and can be limited by the pace of technological advancements.In light of these challenges,the development of more efficient and scientifically robust material performance testing and simulation techniques has become a central focus in CMCs research.These methods not only aim to reduce the cost and time involved in material testing but also enable more accurate predictions of material behavior,which are essential for guiding the design and optimization of next-generation CMC structures.[Methods]Experimental and simulation-based approaches were integrated to better understand the material’s behavior under different loading and environmental conditions.The experimental part includes tensile,compression and bending tests for the 0°layer and woven layer materials of 2.5D needled C/SiC composites,at room temperature,500℃and 1000℃,in an oxygen-free environment.In addition to the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.146.15