检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伟杰 CHEN Weijie(Medical College Jinzhou Medical University,Jinzhou 121010,China)
出 处:《现代食品》2024年第24期122-124,共3页Modern Food
摘 要:为了提高食品安全保障水平,解决传统食品掺假检测方法效率低、成本高的问题,本文探讨了基于人工智能的食品掺假识别与质量检测技术。采用机器学习、深度学习、计算机视觉及光谱分析等技术,对食品掺假检测与质量监控进行了分析。研究结果表明,人工智能能够有效提升食品掺假识别的准确性和实时性,提高食品质量检测的智能化水平。未来通过多模态数据融合、轻量级AI模型优化及区块链技术应用,可进一步提升食品安全监管能力。因此建议推动人工智能在食品检测设备中的产业化应用,实现食品安全的全链条智能监测。In order to improve the level of food safety and solve the problems of low efficiency and high cost of traditional food adulteration detection methods,this paper discusses the food adulteration identification and quality detection technology based on artificial intelligence.The detection and quality control of food adulteration were analyzed by using machine learning,deep learning,computer vision and spectral analysis.The results show that artificial intelligence can effectively improve the accuracy and real-time of food adulteration identification,and improve the intelligent level of food quality detection.In the future through multi-modal data fusion,lightweight AI model optimization and the application of blockchain technology,food safety supervision capabilities can be further improved.It is suggested to promote the industrial application of artificial intelligence in food testing equipment to realize the intelligent monitoring of the whole chain of food safety.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.70.25