基于三通道深度融合技术的图像隐写方法  

An Image Steganography Method Based on Three-channel Deep Fusion Technology

在线阅读下载全文

作  者:刘连山 黄瑜 Liu Lianshan;Huang Yu(School of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590)

机构地区:[1]山东科技大学计算机科学与工程学院,山东青岛266590

出  处:《信息安全研究》2025年第3期257-264,共8页Journal of Information Security Research

基  金:山东省自然科学基金项目(ZR2022MF277);山东省重点研发计划(软科学)项目(2023RKL01003)。

摘  要:科学技术的发展为信息传输提供了便利,但也导致了信息泄露.为提高隐写图像质量和隐写容量,提出了一种基于三通道深度融合技术的图像隐写方法.首先,隐写模型的主通道用于提取载体图像特征,该网络基于U-Net网络结构,同时引入了残差块;然后,底层通道和中间通道用于提取秘密图像特征;最后,通过交叉融合的方式将底层通道第1,3层网络提取的特征融合到中间通道的对应层网络中,再将中间通道第2,4层网络提取的特征融合到主通道的对应层网络中.实验结果表明,该方法有很好的不可见性,在嵌入容量达到24bpp时,隐写图像的PSNR达到41.15dB,有效地提高了图像传输的安全性和隐写容量.The advancement of science and technology for information transmission provides convenience,but it has also led to information leaks.Aim at enhancing the quality and capacity of steganographic images,a three-channel deep fusion technology used in image steganography is designed.Firstly,the main channel of the steganographic model is used to extract features from the carrier image.This network is based on the U-Net network structure and introduces residual blocks(ResBlock).Then,the bottom channel and the middle channel are utilized for extracting secret image features.Finally,fusing the features from the first and third layers of the bottom channel network into the corresponding layers of the middle channel network through way of crossfusion.Further,the features extracted from the second and fourth layers of the middle channel network are fused into the corresponding layers of the main channel network.The experimental results demonstrate that the proposed method has good invisibility.When the embedding capacity reaches 24bpp,the PSNRof the hidden image reaches 41.15dB,effectively improving the security of image transmission and steganography capacity.

关 键 词:图像隐写 U-Net 残差块 跳跃连接 特征融合 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象