检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志雯 于乃功[1,2] 边琰 闫金涵[1,2] ZHANG Zhiwen;YU Naigong;BIAN Yan;YAN Jinhan(School of Information Science and Technology,Beijing University of Technology,Beijing 100124,P.R.China;Beijing Key Laboratory of Computational Intelligence and Intelligent Systems,Beijing 100124,P.R.China;School of Automation and Electrical Engineering,Tianjin Polytechnic Normal University,Tianjin 300222,P.R.China;Tianjin Key Laboratory of Information Sensing and Intelligent Control,Tianjin 300222,P.R.China)
机构地区:[1]北京工业大学信息科学技术学院,北京100124 [2]北京市计算智能与智能系统重点实验室,北京100124 [3]天津职业技术师范大学自动化与电气工程学院,天津300222 [4]天津市信息传感与智能控制重点实验室,天津300222
出 处:《生物医学工程学杂志》2025年第1期17-23,共7页Journal of Biomedical Engineering
基 金:国家自然科学基金项目(62076014)。
摘 要:情绪分类识别是情感计算的关键领域,脑电等生理信号可精准反映情绪且难以伪装。现阶段,情绪识别在单模态信号特征提取和多模态信号整合方面存在局限。本研究收集了高兴、悲伤、恐惧情绪下的脑电(EEG)、肌电(EMG)、皮电(EDA)信号,采用基于特征权重融合的方法进行特种融合并用支持向量机(SVM)和极限学习机(ELM)进行分类。结果表明,融合权重为EEG 0.7、EMG 0.15、EDA 0.15时分类最准确,准确率SVM为80.19%,ELM为82.48%,比单独脑电信号分别提升了5.81%和2.95%。此研究为多模态生理信号情绪分类识别提供了方法支持。Emotion classification and recognition is a crucial area in emotional computing.Physiological signals,such as electroencephalogram(EEG),provide an accurate reflection of emotions and are difficult to disguise.However,emotion recognition still faces challenges in single-modal signal feature extraction and multi-modal signal integration.This study collected EEG,electromyogram(EMG),and electrodermal activity(EDA)signals from participants under three emotional states:happiness,sadness,and fear.A feature-weighted fusion method was applied for integrating the signals,and both support vector machine(SVM)and extreme learning machine(ELM)were used for classification.The results showed that the classification accuracy was highest when the fusion weights were set to EEG 0.7,EMG 0.15,and EDA 0.15,achieving accuracy rates of 80.19%and 82.48%for SVM and ELM,respectively.These rates represented an improvement of 5.81%and 2.95%compared to using EEG alone.This study offers methodological support for emotion classification and recognition using multi-modal physiological signals.
分 类 号:R318[医药卫生—生物医学工程] TN911.7[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.203.53