检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董瑞钧 DONG Ruijun(Power China Jiangxi Electric Power Engineering Co.,Ltd.,Nanchang 330096)
机构地区:[1]中国电建集团江西省电力设计院有限公司,江西南昌330096
出 处:《电力安全技术》2025年第1期39-43,共5页Electric Safety Technology
摘 要:分析总结了大量变压器油中溶解气体含量的历史数据,探究了气体产生与变压器故障之间的内部联系,并结合人工智能方法构建了变压器故障智能诊断模型,模型以支持向量机为基础,以麻雀搜索算法寻解,引入反向学习策略和萤火虫干扰策略进一步提升寻优能力。仿真试验分析结果表明,该模型能够迅速收敛,对变压器故障诊断的准确率可达96%,高于现有智能诊断方法。By analyzing and summarizing the massive historical data on the content of dissolved gas in transformer oil,the internal relationship between gas generation and transformer faults is studied,based on which an intelligent diagnosis model for transformer faults is built combined with the artificial intelligence technique.The model,based on support vector machine,uses the sparrow search algorithm for a solution,and introduces the reverse learning strategy and the firefly interference strategy to further enhance its optimization capacity.The analysis on simulation tests show that the model is available to converge rapidly and its diagnosis accuracy rate for transformer faults reaches up to 96%,higher than that based on the existing intelligent diagnosis methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.84.11