检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏圣强 SU Shengqiang(Xi′an Shiyou University,School of Computer Science,Xi′an Shaanxi 710000)
机构地区:[1]西安石油大学计算机学院,陕西西安710000
出 处:《长江信息通信》2024年第11期84-87,共4页Changjiang Information & Communications
摘 要:近年来,随着新能源汽车的发展趋势日益火热,对辅助驾驶、自动驾驶等技术要求也越加严格,但是在现实的驾驶情景中,道路环境复杂程度较高,特别针对遮挡的现象,现有的算法检测精度不高,且车载电脑的算力有限。针对这些问题,文章设计了三点改进方案。改进后的模型在BDD100k数据集下计算量只有6.1GFLOPs,为原模型的75%,同时Map50提升了8.4%。研究结果为后续辅助驾驶的目标识别和移动端的部署提供了参考和依据。In recent years,with the increasing popularity of new energy vehicles,the requirements for technologies such as assisted driving and autonomous driving have become more stringent.However,in real driving scenarios,the complexity of road environments is high,especially in the case of occlusion.The detection accuracy of existing algorithms is not high,and the computing power of on-board computers is limited.In response to these issues,this paper proposes three improvement schemes.The improved model has a computational cost of only 6.1GFLOPs under the BDD100kdataset,which is 75%of the original model,while Map50 has increased by 8.4%.The research results provide reference and basis for subsequent target recognition of assisted driving and deployment on mobile devices.
关 键 词:目标检测 YOLOv8 深度学习 Soft-NMS
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147