基于改进YOLOv8交通情景下检测算法研究  

Research on Improved YOLOv8Detection Algorithm for Traffic Scenarios

在线阅读下载全文

作  者:苏圣强 SU Shengqiang(Xi′an Shiyou University,School of Computer Science,Xi′an Shaanxi 710000)

机构地区:[1]西安石油大学计算机学院,陕西西安710000

出  处:《长江信息通信》2024年第11期84-87,共4页Changjiang Information & Communications

摘  要:近年来,随着新能源汽车的发展趋势日益火热,对辅助驾驶、自动驾驶等技术要求也越加严格,但是在现实的驾驶情景中,道路环境复杂程度较高,特别针对遮挡的现象,现有的算法检测精度不高,且车载电脑的算力有限。针对这些问题,文章设计了三点改进方案。改进后的模型在BDD100k数据集下计算量只有6.1GFLOPs,为原模型的75%,同时Map50提升了8.4%。研究结果为后续辅助驾驶的目标识别和移动端的部署提供了参考和依据。In recent years,with the increasing popularity of new energy vehicles,the requirements for technologies such as assisted driving and autonomous driving have become more stringent.However,in real driving scenarios,the complexity of road environments is high,especially in the case of occlusion.The detection accuracy of existing algorithms is not high,and the computing power of on-board computers is limited.In response to these issues,this paper proposes three improvement schemes.The improved model has a computational cost of only 6.1GFLOPs under the BDD100kdataset,which is 75%of the original model,while Map50 has increased by 8.4%.The research results provide reference and basis for subsequent target recognition of assisted driving and deployment on mobile devices.

关 键 词:目标检测 YOLOv8 深度学习 Soft-NMS 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象