检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张询 于彬[1] ZHANG Xun;YU Bin(School of Forensic Science and Technology,Criminal Investigation Police University of China,Shenyang 110035,China)
机构地区:[1]中国刑事警察学院刑事科学技术学院,辽宁沈阳110035
出 处:《中国人民公安大学学报(自然科学版)》2025年第1期7-16,共10页Journal of People’s Public Security University of China(Science and Technology)
基 金:公安部科技强警基础工作专项项目(2018GABJC05);公安部科技强警基础工作专项项目(2019GABJ04)。
摘 要:探讨了图像锐化处理和优化器选择对VGG16模型在印章印文种类鉴别任务中的影响。结合OpenCV进行图像预处理和锐化处理,评估了SGD与Adam优化器的性能表现。实验结果表明,图像锐化显著提升了模型的特征提取能力和分类精度,而SGD优化器在验证集和测试集上的准确率均超过95%,且在收敛速度和稳定性方面优于Adam。因此,适当的图像锐化处理和优化器选择能够有效提高VGG16模型的分类性能,未来可通过扩展数据集和优化算法进一步提升印章印文识别的效率和鲁棒性。The impact of image sharpening and optimizer selection on the performance of the VGG16 model for stamp inscription classification tasks were explored.By combining image preprocessing and sharpening with OpenCV,the performance of the SGD and Adam optimizers were evaluated.The experimental results demonstrated that image sharpening significantly enhanced the feature extraction capability and classification accuracy of the model.Additionally,the SGD optimizer achieved an accuracy of over 95%on both the validation and test sets,with superior convergence speed and stability compared to Adam.Therefore,appropriate image sharpening and optimizer selection could effectively improve the classification performance of VGG16 model,and the stamp inscription recognition efficiency and robustness could be improved through dataset expansion and algorithm optimization in the future.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49