机构地区:[1]昆明医科大学第二附属医院肝胆胰外科一病区,昆明650033 [2]昆明医科大学第二附属医院泌尿外科二病区,昆明650033 [3]昆明医科大学第二附属医院肝胆胰外科三病区,昆明650033
出 处:《中华肝胆外科杂志》2025年第1期23-28,共6页Chinese Journal of Hepatobiliary Surgery
基 金:昆医联合专项面上项目(202301AY070001-238)。
摘 要:目的:构建和评价原发性肝癌自发性破裂的列线图预测模型,并制作网络动态在线列线图。方法:回顾性分析昆明医科大学第二附属医院346例原发性肝癌患者资料,其中男性292例,女性54例,年龄(58.0±11.2)岁。采用单因素和多因素logistic回归分析筛选PLC自发性破裂的影响因素,据此构建列线图预测模型,应用受试者工作特征(ROC)曲线、校准曲线、临床决策分析对模型进行评价,使用R4.3.1软件中的DynNom包开发网络版动态在线列线图。结果:多因素logistic回归分析显示,既往无系统抗肿瘤治疗史、甲胎蛋白水平、肿瘤突出肝表面、肿瘤长径、血管受侵犯、中到大量腹水为PLC自发性破裂的危险因素(均 P<0.05)。以此构建的列线图预测模型的ROC曲线下面积值为0.913(95% CI:0.884~0.943),最佳界值为0.254,灵敏度为0.892,特异度为0.803。校准曲线显示校准曲线与理想曲线贴合良好,预测情况与实际发生情况之间的一致性较好。模型的决策曲线在0.07~0.98的横范围内位于"无"和"全部"两条无效线上方,此时模型的临床净获益>0。然后构建了简单易用的网络动态在线列线图。 结论:肿瘤较大、位置浅表、既往无系统抗肿瘤治疗史、高甲胎蛋白水平、血管受侵以及中到大量腹水为PLC自发性破裂的独立危险因素,以此构建的预测模型及网络动态在线列线图可有效评估PLC自发性破裂的发生风险。ObjectiveTo construct and evaluate the nomogram prediction model of spontaneous rupture of primary liver cancer(STRPLC),and make the web-based dynamic online nomogram.MethodsClinical data of 346 patients with PLC treated in the Second Affiliated Hospital of Kunming Medical University were retrospectively analyzed,including 87 males and 15 females,aged 58.15±10.32 years.Single factor and multiple factor logistic regression analysis were used to screen the influencing factors of STRPLC,and the prediction model was constructed based on the nomogram.Receiver operating characteristic(ROC)curve,calibration curve and clinical decision analysis were used to evaluate the model.The web-based dynamic online nomogram was developed using the DynNom package in R4.3.1 software.ResultsMultivariate logistic regression analysis showed that the independent risk factors for spontaneous rupture and hemorrhage of tumor were no history of systematic anti-tumor therapy,alpha-fetoprotein(AFP)level,tumor protrusion on liver surface,tumor length,invasion of major blood vessels,and moderate to large amount of ascites(all P<0.05).The area under the receiver operating characteristic curve(AUC)of the prediction model constructed by this nomogram is 0.913(95%CI:0.884-0.943),the best cutoff value is 0.254,with a sensitivity of 0.892,and a specificity of 0.803.The calibration curve shows a good agreement between the predicted probability and the actual probability.The decision curve of the model is above the two invalid lines of"none"and"all"in the horizontal range of 0.07-0.98,and the clinical net benefit of the model is>0.Then user-friendly web-based dynamic online nomogram is constructed.ConclusionLarge tumor size,superficial location,no history of systematic anti-tumor therapy,high AFP level,invasion of major blood vessels,and moderate to large amount of ascites are independent risk factors for STRPLC.The prediction model and dynamic online nanogram constructed by this method can effectively assess the risk of STRPLC.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...