检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡朝举[1] 郭凤仪 HU Chaoju;GUO Fengyi(Department of Computing,North China Electric Power University,Baoding 071000,Hebei,China)
出 处:《计算机工程》2025年第2期78-85,共8页Computer Engineering
基 金:国家自然科学基金(61502168)。
摘 要:人工巡检的管理方式导致光纤总配线架(MODF)端口状态的信息准确率较低,无法区分占用端口与虚占端口。针对MODF资源管理中的端口状态识别问题,提出一种改进的YOLOv7目标检测模型。鉴于数据集采集困难且类别不均衡,采用多种数据增强方法来扩充数据集;在骨干网络中使用共享权重的感受野扩大模块(RFEM),扩大端口目标的感受野,减少训练过程中的过拟合风险;提出F-EMA注意力模块,以提高对空间上下文信息的利用率,减少因端口接近或被遮挡而导致的漏检、误检等情况;使用NWD损失函数替代交并比(IoU)度量,减轻对小目标位置偏差的敏感性,提升密集小物体检测准确率。实验结果表明,改进模型的mAP@0.5值达到98.8%,相比原Yolov7模型提升了2百分点,mAP@0.5∶0.95值达到63.8%,提升了9.5百分点,提高了MODF端口资源利用率,满足智能巡检系统对于端口占用状态识别准确率的基本要求。In recent years,manual inspection management methods have led to low accuracy in identifying the status of Fiber Optic Distribution Frame(MODF)ports,making it difficult to differentiate between occupied and unoccupied ports.To address the problem of status recognition in MODF port resource management,this study proposes an improved YOLOv7 object-detection model.First,owing to the difficulty in data collection and unbalanced categories,multiple data enhancement methods are used to expand the dataset.In addition,a shared-weight Receptive Field Expansion Module(RFEM)is used in the backbone network to enlarge the receptive field of the port targets and reduce the risk of overfitting during the training process.The F-EMA attention module is proposed to improve the utilization of spatial context information and reduce missed detections and false alarms caused by ports being closed or occluded.The Normalized Gaussian Wasserstein Distance(NWD)loss function is used to replace the Intersection over Union(IoU)measurement,which alleviates the sensitivity to the position deviation of small targets and improves the detection accuracy of dense small objects.The experimental results show that the mAP@0.5 value of the improved model reaches 98.8%,which is 2 percentage points higher than that of the original Yolov7 model,whereas the mAP@0.5∶0.95 value reaches 63.8%,which is 9.5 percentage points higher.This improves the utilization rate of MODF port resources and meets the basic requirements of the intelligent inspection system for the accuracy of port occupancy status recognition.
关 键 词:深度学习 YOLOv7算法 光纤总配线架 损失函数 感受野扩大模块 注意力模块
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200