检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱静[1] 赵艳[1] ZHU Jing;ZHAO Yan(Ruijin Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200025,China)
机构地区:[1]上海交通大学医学院附属瑞金医院信息中心,上海市200025
出 处:《中国卫生信息管理杂志》2025年第1期32-37,共6页Chinese Journal of Health Informatics and Management
摘 要:目的 提出一种基于大语言模型与知识图谱的体检报告智能解读系统,旨在解决传统方法效率低、个性化不足的问题。方法 体检报告智能解读系统基于结构化的医疗知识图谱,结合检索增强生成技术与大语言模型的深度协同,能够从体检报告中自动识别潜在疾病风险,并生成针对性的健康管理建议。结果 实验结果表明,本系统在准确性和体检者满意度方面显著优于传统方法,准确率提升12.8%,体检者满意度评分达4.7分(满分5分)。结论 融合知识的大语言模型不仅提升了体检报告的解读质量,还为医疗健康领域智能化发展提供了创新路径。Objective This paper proposes an intelligent interpretation for medical examination reports that integrates Large Language Models(LLMs)with knowledge graphs,aiming to address the issues of low efficiency and lack of personalization in traditional methods.Methods The intelligent physical examination report interpretation system,grounded in a structured medical knowledge graph and integrating the deep-seated collaboration of Retrieval-augmented generation technology and LLMs,is capable of automatically identifying potential disease risks from physical examination reports and generating targeted health management recommendations.Results The results indicate that the framework significantly outperforms traditional methods in terms of accuracy and user satisfaction,with an increase in accuracy of 12.8%and a user satisfaction rating of 4.7 out of 5.Conclusion The integration of knowledge with large language models not only enhances the quality of interpretation but also paves the way for innovative development in thefield of medical health intelligence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.176.186