无线传感器网络下高压架空线路缺陷检测方法  

Defect Detection Method for High-Voltage Overhead Lines in Wireless Sensor Networks

作  者:徐伟斌 张伟堂 李卓坚 卢锦祥 刘鑫 XU Weibin;ZHANG Weitang;LI Zhuojian;LU Jinxiang;LIU Xin(Jiangmen Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Jiangmen 529000,China;Guangzhou Andian Measurement and Control Technology Co.,Ltd.,Guangzhou 510000,China)

机构地区:[1]广东电网有限责任公司江门供电局,广东江门529000 [2]广州安电测控技术有限公司,广东广州510000

出  处:《传感器世界》2025年第1期11-14,共4页Sensor World

摘  要:由于高压架空线路的故障具有突发性和不确定性,传统的线路检测方法无法实时监测线路状态,识别缺陷的类型,导致检测效果不佳。文章设计一种无线传感器网络下高压架空线路缺陷检测方法,通过布置无线传感器节点实时收集线路状态数据,对采集到的高压架空线路数据进行融合处理,提供更准确的故障预警,采用支持向量机算法建立缺陷检测模型,通过计算概率值的结果,识别缺陷检测类型,实现高压架空线路缺陷检测。实验结果表明,无线传感器网络下高压架空线路缺陷检测方法在绝缘子破损缺陷类型电流标准偏差检测值与实际值仅差0.89,并且在剩余多个缺陷类型上均表现出了较好的检测效果。Due to the suddenness and uncertainty of faults in high-voltage overhead lines,traditional line detection methods cannot monitor the status of the lines in real time and identify the types of defects,resulting in poor detection results.Therefore,a defect detection method for high-voltage overhead lines under wireless sensor networks is designed.By arranging wireless sensor nodes and collecting real-time line status data,the collected high-voltage overhead line data is fused and processed to provide more accurate fault warning.Using support vector machine algorithm,establish a defect detection model,identify defect detection types by calculating probability values,and achieve defect detection of high-voltage overhead lines.The experimental results show that the defect detection method for high-voltage overhead lines under wireless sensor networks shows a difference of only 0.89 between the standard deviation detection value and the actual value for insulator damage defect types,and shows good detection performance on the remaining multiple defect types.

关 键 词:无线传感器网络 无线通信协议 支持向量机算法 高压架空线路 缺陷检测 

分 类 号:TM755[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象