检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭暑秋[1] 凌志豪 潘嘉豪 刘亚辉[1] TAN Shuqiu;LING Zhihao;PAN Jiahao;LIU Yahui(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
机构地区:[1]重庆理工大学计算机科学与工程学院,重庆400054
出 处:《计算机工程与应用》2025年第5期222-232,共11页Computer Engineering and Applications
基 金:重庆市教育委员会科学技术研究项目(青年)(KJQN202101149);重庆市基础研究与前沿探索专项(重庆市自然科学基金)(CSTB2022NSCQ-MSX0918)。
摘 要:针对人脸超分辨率在基于先验引导的背景下对精确的人脸关键点检测和面部对齐的依赖,这一依赖对方法的泛化性和实用性带来了一定限制。为了克服这一问题,提出了一种全局结构感知与局部增强网络。该方法通过双路径网络结构和特征融合,实现了全局人脸表示和局部细节表示的有效结合。全局特征路径基于多尺度残差学习和注意力机制对整体人脸结构进行建模,局部增强路径使用估计的人脸解析图来提高重建质量,并减少网络对人脸先验的依赖。自适应特征融合单元能够生成清晰且细节丰富的人脸图像。在CelebA和Helen数据集上的实验评估显示,所提出的网络在人脸超分辨率结果上优于其他先进方法。Aiming at the limitations on the generalization and practicality of face super-resolution methods caused by the reliance on accurate facial key point detection and alignment based on prior knowledge,this paper proposes a global structureaware and local enhancement network(GSLEN).The global feature path models the overall face structure using multiscale residual learning and attention mechanisms.The local enhancement path utilizes an estimated face parsing map to enhance reconstruction quality and reduce the network’s dependency on facial priors.Finally,the adaptive feature fusion unit generates clear and detail-rich face images.The improved algorithm is applied to the CelebA and Helen datasets.The experimental evaluations demonstrate that the proposed network outperforms other state-of-the-art methods in face superresolution results.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.182.74