检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王其昂 王浩博 周明利 孙发源 倪一清[3] 吴子燕[4] 丁安驰 李健朋 李文磊 WANG Qi’ang;WANG Haobo;ZHOU Mingli;SUN Fayuan;NI Yiqing;WU Ziyan;DING Anchi;LI Jianpeng;LI Wenlei(State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining and Technology,Xuzhou 221008,China;Xuzhou Traffic Engineering General Contracting Co.,Ltd.,Xuzhou 221003,China;Department of Civil and Environmental Engineering,The Hong Kong Polytechnic University,Hong Kong,China;School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi’an 710072,China)
机构地区:[1]中国矿业大学深地工程智能建造与健康运维全国重点实验室,江苏徐州221008 [2]徐州市交通工程总承包有限公司,江苏徐州221003 [3]香港理工大学土木及环境工程学系,中国香港 [4]西北工业大学力学与土木建筑学院,陕西西安710072
出 处:《振动工程学报》2025年第2期260-267,共8页Journal of Vibration Engineering
基 金:国家自然科学基金资助项目(51708545);中国博士后科学基金面上项目(2019M652006)。
摘 要:聚类分析是数据处理中常用的无监督方法,而聚类分析参数较难精准确定,限制了该方法在结构损伤识别中的应用。为解决该问题,本文提出了一种非参数贝叶斯聚类方法,结合结构模态参数开展结构损伤识别和定量分析,拓展了非参数贝叶斯模型的应用范围。所提方法采用自然激励技术处理结构实测振动数据以得到固有频率,通过非参数贝叶斯聚类方法对数据进行聚类,最终结合极大似然异方差高斯过程和贝叶斯因子对聚类结果进行损伤定量分析。通过天津永和桥实际工程案例对所提损伤识别方法的结果进行验证,结果表明,该方法能够在不提前设置聚类参数的情况下,对结构自振频率数据进行精准聚类分析,进一步对结构不同损伤状态进行识别。Clustering analysis is a commonly used unsupervised method in data processing.However,the difficulty in accurately de-termining clustering parameters limits the application of this method in structural damage identification.To address this issue,a non-parametric Bayesian clustering method is proposed in this study,which combines structural modal parameters for structural damage identification and quantitative analysis,thereby expanding the application range of the non-parametric Bayesian model.First,the natural excitation method is used to extract the natural frequency from the measured vibration data of the structure.Then,the non-parametric Bayesian clustering method is employed to cluster the data.Finally,maximum likelihood heteroscedastic Gaussian process regression and Bayesian factors are combined to quantitatively analyze the clustering results for damage quantita-tion analysis.The results of the damage identification method are verified by the actual engineering case of Yonghe Bridge in Tian-jin.The results show that this method can accurately cluster the natural frequency data and identify the different damage states of the structure without the need to pre-set clustering parameters.
关 键 词:结构健康监测 损伤识别 非参数贝叶斯 贝叶斯因子 模态参数
分 类 号:U443.38[建筑科学—桥梁与隧道工程] TU446[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49