基于堆叠稀疏自编码器与GAN的线损分层定位  

Layered line loss localization based on stacked sparse autoencoder and GAN

在线阅读下载全文

作  者:杜月 王慧琴 余兆媛 钱亚林 魏敏俊 DU Yue;WANG Huiqin;YU Zhaoyuan;QIAN Yalin;WEI Minjun(Anqing Power Supply Company of State Grid Auhui Electric Power Co.,Ltd.,Anqing 246003,China)

机构地区:[1]国网安徽省电力有限公司安庆供电公司,安徽安庆246003

出  处:《电子设计工程》2025年第5期115-119,共5页Electronic Design Engineering

摘  要:线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出电量和统计线损,以此作为分层存在异常线损的依据。基于堆叠稀疏自编码器的定位原理,通过在代价函数中增加散度,引导输出结果稀疏。根据确定的稀疏编码所在空间,借助SVM分类核函数,定位线损所在层次。由实验结果可知,所研究方法统计的四种线损变化范围分别是3.0~4.0 kW·h、1.0~3.0 kW·h、0.4~0.7 kW·h、4.2~4.8 kW·h,对应的窃电位置分别为表箱1层、表箱2层、表箱3层、表箱4层,具有精准的定位效果。Due to the presence of noise data in the line loss data,the dimensionality is consistent with the line loss data,resulting in inaccurate line loss localization results.Therefore,a hierarchical line loss localization method based on stacked sparse autoencoder and GAN is proposed.Construct a hierarchical positioning GAN structure for line loss,distinguish between false and true data,and obtain hierarchical data for line loss.Based on the layered collection results,calculate the layered incoming and outgoing electricity quantities and calculate the line losses,as a basis for the existence of abnormal line losses in the layered data.Based on the positioning principle of stacked sparse autoencoder,increasing divergence in the cost function leads to sparse output results.Based on the determined sparse encoding space,the SVM classification kernel function is used to locate the level of line loss.According to the experimental results,the four types of line loss variation ranges calculated by the research method are 3.0~4.0 kW·h,1.0~3.0 kW·h,0.4~0.7 kW·h,4.2~4.8 kW·h,respectively.The corresponding stealing positions are meter box 1 layer,meter box 2 layer,meter box 3 layer,and meter box 4 layer,which have precise positioning effects.

关 键 词:堆叠稀疏自编码器 生成对抗网络 线损分层定位 SVM分类 稀疏编码 

分 类 号:TN01[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象