检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆海洋 柳先辉[2] 侯文龙 LU Haiyang;LIU Xianhui;HOU Wenlong(College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China;CAD Research Center,College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China)
机构地区:[1]同济大学电子与信息工程学院,上海201804 [2]同济大学电子与信息工程学院CAD研究中心,上海201804
出 处:《计算机科学》2025年第3期161-168,共8页Computer Science
基 金:国家重点研发计划(2022YFB3305700)。
摘 要:为了解决信息过载的问题,推荐系统被广泛研究。由于很难获取大量高质量的显式反馈数据,隐式反馈数据成为训练推荐系统的主流选择。从未标记的数据中采样负例,即负采样,对于训练基于隐式反馈的推荐模型非常重要。现有推荐系统的负采样方法往往只关注如何选择包含更多用户偏好信息的强负样例,却没有考虑强负样例的假阴性问题。为了降低采样得到的负样例的假阴性概率并提高其信息量,提出了一种融合知识图谱的负采样方法。首先,根据用户-项目知识图谱构建负样例候选集;然后,通过基于贝叶斯分类的方式从候选集中筛选假阴性概率最小的负样例;最后,基于Mixup策略引入正混合技术构建强负样例。为了验证所提出方法的有效性,在两个公开数据集上进行了实验。结果表明,与现有方法相比,所提方法表现更优。In order to solve the problem of information overload,recommender systems have been widely studied.Since it is difficult to obtain a large amount of high-quality explicit feedback data,implicit feedback data becomes the mainstream choice for training re-commender systems.Sampling negative instances from unlabeled data,i.e.negative sampling,is crucial for training recommendation models based on implicit feedback data.The previous negative sampling methods often focus on how to select hard negative instances that contain more user preference information,without considering the false negative problem.In order to reduce the false negative probability of negative instances obtained from sampling and make them more informative,a negative sampling method that integrates knowledge graph is proposed.Firstly,constructing a candidate instance set based on the user-item knowledge graph.Then,the negative instance with the lowest false negative probability is selected from the candidate set through a Bayesian classification approach.Finally,based on the Mixup strategy,positive mixing technology is introduced to construct the hard negative instance.To evaluate the effectiveness of the proposed method,validation was conducted on two public datasets.The results show that compared with previous methods,the method proposed in this paper performs better.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.234