检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡海峰[1] 朱漪雯 赵海涛 HU Haifeng;ZHU Yiwen;ZHAO Haitao(College of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Portland Institute,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;College of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
机构地区:[1]南京邮电大学通信与信息工程学院,南京210003 [2]南京邮电大学波特兰学院,南京210023 [3]南京邮电大学物联网学院,南京210003
出 处:《计算机科学》2025年第3期349-358,共10页Computer Science
基 金:国家自然科学基金(62371245)。
摘 要:端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Based Network Slicing Latency Prediction,HGNN)算法。首先,构建了切片-队列-链路的分层异构图,实现了切片的分层特征表达。然后,针对分层图中切片、队列和链路3种类型节点的属性特点,使用异构图神经网络挖掘拓扑动态变化、边特征信息和长依赖关系等和切片相关的底层特征,即分别选用GraphSAGE图神经网络、EGRET图神经网络和门控循环单元GRU来提取切片、队列和链路特征。同时,利用基于异构图神经网络的深度回归实现了网络切片特征表达的更新迭代和切片时延的准确预测。最后,通过构建基于OMNeT++的不同拓扑结构、流量模型和调度策略的切片数据库,验证了HGNN在实际网络场景下对切片端到端时延预测的有效性,并通过对比多种基于图深度学习的切片时延预测算法,进一步验证了HGNN在时延预测准确度和泛化性方面的优越性。End-to-end latency,as a crucial performance metric for network slicing,is difficult to predict accurately via modeling due to the influences of network topology,traffic model,and scheduling policies.To tackle the above issues,we propose a heterogeneous graph neural network-based network slicing latency prediction(HGNN)algorithm,where the hierarchical heterogeneous graph of slice-queue-link is constructed to implement the hierarchical feature representation of the slice.Then,considering the attribute characteristics of three types of nodes in the hierarchical graph,i.e.slices,queues,and links,a heterogeneous graph neural network is presented to extract the underlying slice-related features such as topological dynamic changes,edge feature information,and long dependency relationships.Specifically,the graph neural network GraphSAGE,the graph neural network EGRET,and gated recurrent unit GRU are respectively adopted to extract the features of slices,queues,and link.Meanwhile,the iterative update of network slice feature representation and accurate prediction of slice latency are achieved using deep regression based on the heterogeneous graph neural network.Finally,a slice database with various topologies,traffic models,and scheduling policies is constructed using OMNeT++,and the effectiveness of HGNN in predicting slice end-to-end latency is validated on this database.Additionally,by comparing with other graph deep learning-based slice latency prediction methods,the superiority of HGNN in terms of prediction accuracy and generalization is further verified.
分 类 号:TN929[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49