检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈宇洋 李峰[1] CHEN Yuyang;LI Feng(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《电子科技》2025年第3期47-59,共13页Electronic Science and Technology
基 金:国家重点研发计划(2020YFC2008704)。
摘 要:针对积液区域尺寸小、形状异质、细节模糊等问题,文中将卷积神经网络(Convolutional Neural Networks,CNN)和Transformer相融合,提出了一种创新的多分支分割网络。该网络包括全卷积路径、Transformer路径和CNN-Transformer融合路径3个关键路径。全卷积路径用于捕获病变区域的细节特征,Transformer路径提取了具有长范围依赖的多尺度非局部特征信息。融合路径同时利用了CNN和Transformer的优势弥补其他分支的不足之处,通过预测头整合3个分支的特征生成最终的分割图。在Kermany数据集、UMN数据集和DUKE数据集上针对视网膜内积液和视网膜下积液进行了视网膜积液分割性能测试。实验结果表明,所提方法的Dice系数为86.63%,交并比为77.02%,灵敏度为89.47%,精确度为85.51%,证明了其有效性,为视网膜积液自动分割问题提供了一种可行的解决方案。In view of the problems such as small size,heterogeneous shape and fuzzy details of the fluid accumulation area,this study integrates CNN(Convolutional Neural Networks)and Transformer to propose an innovative multi-branch segmentation network.The network consists of full convolutional path,Transformer path and CNN-Transformer fusion path.The fully convolutional path is used to capture detailed features of the lesion area,while the Transformer path extracts multi-scale non-local feature information with long-range dependencies.The fusion path takes advantage of both CNN and Transformer to make up for the shortcomings of other branches.The features of the three branches are integrated through the prediction head to generate the final segmentation map.The performance of retinal effusion segmentation is tested on Kermany,UMN and DUKE data sets for intraretinal effusion and subretinal effusion.The experimental results show that the Dice coefficient of the proposed method is 86.63%,the crossover ratio is 77.02%,the sensitivity is 89.47%,and the accuracy is 85.51%,which proves its effectiveness and provides a feasible solution for the automatic segmentation of retinal effusion.
关 键 词:视网膜OCT图像 卷积神经网络 TRANSFORMER 分割网络 IRF SRF 视网膜积液 注意力机制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248