机构地区:[1]青海民族大学药学院,青海西宁810007 [2]中国科学院西北高原生物研究所,青海西宁810008 [3]中国科学院大学,北京100049 [4]青海大学生态环境工程学院,青海西宁810016
出 处:《分析测试技术与仪器》2025年第1期8-21,共14页Analysis and Testing Technology and Instruments
基 金:青海省重点研发与转化计划项目“藏药质量标志物发掘和标准化关键技术及应用示范”(2023-SF-112)。
摘 要:采用高速逆流色谱(high-speed counter-current chromatography,HSCCC)结合制备液相色谱(preparative high performance liquid chromatography,prep-HPLC)对柠条锦鸡儿(Caragana korshinskii Kom.)叶的大孔树脂30%乙醇洗脱部位进行分离.以乙酸乙酯∶正丁醇∶水(体积比3∶7∶10)为HSCCC溶剂对样品进行初步分段分离.随后,采用prep-HPLC对HSCCC组分进一步分离纯化.采用1H-NMR和13C-NMR对分离得到的化合物进行结构鉴定,得到11种黄酮苷类化合物,分别为(1)槲皮素-3-O-α-L-鼠李糖基(1→6)-β-D-吡喃半乳糖苷-7-O-α-L-鼠李糖苷、(2)芦丁-7-O-α-L-鼠李糖苷、(3)异鼠李素-3-O-α-L-鼠李糖基(1→6)-β-D-吡喃半乳糖苷-7-O-α-L-鼠李糖苷、(4)异鼠李素-3-O-α-L-鼠李糖基(1→6)-β-D-葡萄糖苷-7-O-α-L-鼠李糖苷、(5)山柰酚-3-O-α-L-鼠李糖基-(1→6)-β-D-半乳糖苷-7-O-α-L-鼠李糖苷、(6)槲皮素-3-O-β-D-半乳糖苷-7-O-α-L-鼠李糖苷、(7)槲皮素-3-O-β-D-葡萄糖苷-7-O-α-L-鼠李糖苷、(8)异鼠李素-3-O-β-D-半乳糖苷-7-O-α-L-鼠李糖苷、(9)异鼠李素-3-O-β-D-葡萄糖苷-7-O-α-L-鼠李糖苷、(10)山柰酚-3-O-β-D-半乳糖苷-7-O-α-L-鼠李糖苷、(11)山柰酚3-O-β-D-葡萄糖苷-7-O-α-L-鼠李糖苷.采用DPPH(2,2-二苯基-1-吡啶并肼基)、·OH、O_(2)^(−)·、ABTS(2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸)自由基清除试验对分离化合物进行抗氧化活性评价.通过分子对接技术评价了化合物与9种氧化应激酶的相互作用.体外抗氧化试验结果显示化合物1、2、6、7具有较好的抗氧化活性,构效关系分析得知3'与4'位的双羟基基团为主要的活性基团.分子对接表明,化合物1、2、6、7与9种氧化应激酶有较高的结合能,主要通过3'与4'位的双羟基形成氢键,与抗氧化试验和构效关系分析结果吻合.为柠条锦鸡儿叶资源的综合开发利用提供了理论依据和技术支持.The eluted fraction of Caragana korshinskii Kom.leaves,which was eluted with 30%ethanol on a macroporous resin,was used to separate the compounds by high-speed counter-current chromatography(HSCCC)and preparative high-performance liquid chromatography(prep-HPLC).A solvent system of ethyl acetate∶n-butanol∶water(volume ratio=3∶7∶10)was utilized for the initial HSCCC separation.Subsequently,the fractions obtained from HSCCC underwent further purification through prep-HPLC.Structural identification of the isolated compounds was conducted using 1H-NMR and 13C-NMR.A total of 11 flavonoid glycosides were separated,identified as follows:(1)quercetin-3-O-α-L-rhamnosyl(1→6)-β-D-galactopyranoside-7-O-α-L-rhamnoside,(2)rutin-7-O-α-L-rhamnoside,(3)isorhamnetin-3-O-α-L-rhamnosyl(1→6)-β-D-galactopyranoside-7-O-α-L-rhamnoside,(4)isorhamnetin-3-O-α-L-rhamnosyl(1→6)-β-D-glucoside-7-O-α-L-rhamnoside,(5)kaempferol-3-O-α-L-rhamnosyl(1→6)-β-D-galactoside-7-O-α-L-rhamnoside,(6)quer-cetin-3-O-β-D-galactoside-7-O-α-L-rhamnoside,(7)quercetin-3-O-β-D-glucoside-7-O-α-L-rhamnoside,(8)isorhamnetin-3-O-β-D-galactoside-7-O-α-L-rhamnoside,(9)isorhamnetin-3-O-β-D-glucoside-7-O-α-L-rhamnoside,(10)kaempferol-3-O-β-D-galactoside-7-O-α-L-rhamnoside,and(11)kaempferol-3-O-β-D-glucoside-7-O-α-L-rhamnoside.The antioxidant activities were evaluated using DPPH(2,2-diphenyl-1-picrylhydrazyl),hydroxyl radicals(·OH),superoxide anion(O_(2)^(−)·),and ABTS(2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid)assays.Additionally,molecular docking studies were performed to assess the interactions of the compounds with 9 oxidative stress enzymes.In vitro antioxidant assays revealed that compounds 1,2,6,and 7 exhibited significant antioxidant activities.Structure-activity relationship analysis indicated that the dihydroxyl groups at positions 3'and 4'were the primary active moieties.Molecular docking studies demonstrated that compounds 1,2,6,and 7 possessed high binding affinities with the 9 oxidative stress enzymes,pri
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...