检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]云南省林业双中心,云南昆明650000 [2]中国铁塔股份有限公司昆明市分公司,云南昆明650000
出 处:《数据通信》2025年第1期19-23,共5页
摘 要:森林防火预警的模型研究一直以来是林业维护中的重要工作。针对现有火灾预警研究中存在的原始数据集质量不高、模型研究缺乏动态性预警能力以及准确率偏低等问题,受3D动态连续帧卷积的启发,本文提出一种基于3D时序金字塔卷积神经网络的动态森林火灾预警模型M。该模型在连续帧上进行极少量、多尺度的卷积操作,以获取不同尺度的时序特征信息。相较于以往的研究,模型M展现出三大优势:一是拥有质量更高规模更大的数据集;二是通过时序特征的获取有效减少了静态干扰;三是模型具有广泛的适用性,能够适用于云南省的大多数地势环境,其综合准确率高达97.7%。一系列的实验结果表明,模型M在出现火焰或烟雾后能够及时地预警并为云南林草的火灾动态预警提供技术支持。
关 键 词:森林火灾预警 卷积神经网络 3D金字塔卷积 动态预警研究
分 类 号:S762.2[农业科学—森林保护学] TP183[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.30.7