检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏成伟 周星宏 李小毛 WEI Chengwei;ZHOU Xinghong;LI Xiaomao(Research Institute of USV Engineering,School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;Institute of Artificial Intelligence,School of Future Technology,Shanghai University,Shanghai 200444,China)
机构地区:[1]上海大学机电工程与自动化学院无人艇工程研究院,上海200444 [2]上海大学未来技术学院人工智能研究院,上海200444
出 处:《上海大学学报(自然科学版)》2025年第1期14-27,共14页Journal of Shanghai University:Natural Science Edition
基 金:科技部重点研发计划资助项目(2020YFC1521703)。
摘 要:基于侧扫声呐的水下沉船自主探测是水下考古的重点研究方向.水下目标的稀缺性阻碍了目标检测模型的训练.为了解决这一问题,使用基于稳定扩散模型的人工智能生成内容技术来补充稀缺的侧扫声呐沉船实例,通过比较多种生成式技术的效果,论证了人工智能生成内容技术在水下沉船探测领域的潜力.基于该技术,提出一种无需额外光学数据和人工标注的数据增强方法,称作自动扩散生成,可用于实现高精度的水下沉船探测.基于YOLOv8n,运用该方法训练的检测器在沉船探测任务中达到95.0%的精度和96.3%的召回率,超出仅使用原始数据训练的检测器1.5%和1.8%;基于Faster RCNN,该方法可以同样促进水下探测的效果,达到94.8%的精度和97.3%的召回率.Autonomous detection of underwater shipwreck based on side scan sonar(SSS)is the key research direction of underwater archaeology.The limited quantity of underwater targets hinders the training of the detectors.To address this issue,we employ artificial intelligence-generated content(AIGC)technology based on stable diffusion model(SDM)to supplement scarce SSS target instances.By comparing the effects of various generative techniques,we demonstrate the potential of AIGC technology in the field of underwater shipwreck detection.Based on this technique,we propose a data enhancement method without additional optical data and manual annotation,called automatic diffusion generation(ADG),which can be used to achieve high precision underwater shipwreck detection.On the YOLOv8n,the detector trained with this method can achieve 95.0%precision and 96.3%recall for underwater shipwreck detection,exceeding 1.5%and 1.8%of the detector trained with only the original data.On the Faster RCNN,this method can also further improve the detector accuracy,achieving 94.8%precision and 97.3%recall.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200