检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李梦莹 LI Meng-ying(Xi'an Vocational University of Automobile,Xi'an 710600,China)
机构地区:[1]西安汽车职业大学,西安710600
出 处:《北方水稻》2025年第1期38-43,共6页NORTHERN RICE
基 金:2025年西哲会科学研究专项般项目(2025YB0269)。
摘 要:随着无人机技术的广泛应用,水稻检测领域的实际需求不断提高,因此研究引入英文语音识别模块,来建立先进的无人机控制结构和检测技术。首先分析无人机的检测设备和航行控制方法,结合配套设备对其检测技术提供较好的基础。其次对英文语音识别处理技术进行分析,以嵌入无人机控制系统从而实现英文语音控制无人机作业。最后对英文语音识别的无人机进行水稻检测,得出环境噪声为40 dB时,英文指令识别的精度为93.5%,识别效率为38 ms。水稻病害程度和生理参数的相关高达0.81,综合以上结果表明基于英文语音识别的无人机在水稻检测的先进性,并为国际田间作业提供技术参考。With the widespread application of drone technology,the actual demand in the field of rice detection is constantly increasing.Therefore,research is being conducted to introduce English speech recognition modules to establish advanced drone control structures and detection technologies.Firstly,analyze the detection equipment and navigation control methods of unmanned aerial vehicles,and provide a good foundation for their detection technology in combination with supporting equipment.Next,analyze the English speech recognition processing technology to embed it into the drone control system and achieve English speech control for drone operations.Finally,the unmanned aerial vehicle for English speech recognition was used for rice detection,and it was found that when the environmental noise was 40 dB,the accuracy of English command recognition was 93.5%,and the recognition efficiency was 38 ms.The correlation between rice disease degree and physiological parameters is as high as 0.81.The above results show that the UAV based on English speech recognition is progressiveness in rice detection,and provide technical reference for international field operations.
关 键 词:英文语音识别 无人机 航行控制 水稻检测 病害程度
分 类 号:S431.9[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38