大数据驱动下的物流专业实践基地建设策略研究  

Research on the Construction Strategy of Logistics Professional Practice Base Driven by Big Data

在线阅读下载全文

作  者:丁衬衬[1] DING Chen-chen(Xinglin College,Nantong University,Qidong 226236,China)

机构地区:[1]南通大学杏林学院,江苏启东226236

出  处:《物流工程与管理》2024年第9期112-115,128,共5页Logistics Engineering and Management

基  金:2024年度江苏省大学生创新创业训练计划项目“基于本科生导师制的大学生创新能力提高探究”研究成果(项目编号:202413993013Y)。

摘  要:随着大数据技术的迅猛发展,物流行业迎来了前所未有的变革机遇。文中聚焦于大数据驱动下的物流专业实践基地建设策略研究,旨在探讨如何通过大数据技术提升物流专业实践基地的建设水平和运营效率。文中分析了当前物流行业的现状及其面临的主要挑战,指出传统物流模式中存在的数据孤岛、信息不对称和资源浪费等问题。接着,文中提出了基于大数据的物流专业实践基地建设的策略,包括建立数据共享平台、优化资源配置、提升运营效率和培养专业人才等方面。通过案例分析和实证研究,验证了大数据技术在物流实践基地建设中的应用效果,发现其不仅能够显著提高物流运作效率,还能为高校和企业提供更加精准的实训机会,促进产学研结合。With the rapid development of big data technology,the logistics industry has ushered in unprecedented opportunities for change.This paper focuses on the research of the construction strategy of logistics professional practice base driven by big data,and aims to discuss how to improve the construction level and operation efficiency of logistics professional practice base through big data technology.This paper analyzes the current situation of the logistics industry and its main challenges,and points out the problems of data island,information asymmetry and resource waste existing in the traditional logistics mode.Then,this paper puts forward the strategy of building logistics professional practice base based on big data,including the establishment of data sharing platform,optimizing resource allocation,improving operation efficiency and cultivating professional talents.Through case analysis and empirical research,this paper verifies the application effect of big data technology in the construction of logistics practice base,and finds that it can not only significantly improve the efficiency of logistics operation,but also provide more accurate training opportunities for universities and enterprises to promote the combination of industry,university and research.

关 键 词:大数据 物流 专业实践基地 资源优化 产学研结合 

分 类 号:G646[文化科学—高等教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象