融合BiFPN和注意力机制的电力设备异常检测算法  

An Anomaly Detection Algorithm for Power Equipment Integrating BiFPN and Attention Mechanism

在线阅读下载全文

作  者:邹琬 杨玥坪 廖文龙 刘睿 王振宇 孙璐[3] 唐浩 ZOU Wan;YANG Yueping;LIAO Wenlong;LIU Rui;WANG Zhenyu;SUN Lu;TANG Hao(State Grid Sichuan Electric Power Company,Chengdu 610041,Sichuan,China;State Grid Sichuan Electric Power Research Institute,Chengdu 610041,Sichuan,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,Sichuan,China)

机构地区:[1]国网四川省电力公司,四川成都610041 [2]国网四川省电力公司电力科学研究院,四川成都610041 [3]西南交通大学信息科学与技术学院,四川成都611756

出  处:《四川电力技术》2025年第1期63-71,共9页Sichuan Electric Power Technology

基  金:国网四川省电力公司科技项目“基于异常事件驱动的变电站智能巡检技术研究”(521997230014)。

摘  要:为提高电力设备异常检测的精度,提出以融合双向加权特征金字塔网络(BiFPN)和三重注意力(TA)机制改进Yolov5s的电力设备异常检测方法。首先,融合BiFPN是在特征融合结构中加入跨尺度连接线以保留更多深层的语义信息,可以有效促进目标的分类识别和位置精确定位;然后,加入采用三分支结构的注意力机制能够更好地提取空间交互注意力和通道空间交互注意力,抑制无用的特征信息;最后,通过采用Soft NMS来取代传统的NMS算法可以有效减少目标的遗漏,并提升检测的准确性。实验数据显示,改进后的YOLOv5s网络模型相较于原始YOLOv5s模型,精确率从88.3%提升至90%,召回率从89%提升至93%,mAP@0.5值从88.7%提升至92.8%,有效地提高了检测精度。In order to improve the accuracy of anomaly detection of power equipment,an improved Yolov5s anomaly detection method for power equipment by combining bidirectional weighted feature pyramid network(BiFPN)and triplet attention(TA)mechanism is proposed.In the integrated BiFPN,the cross-scale connection lines are added into the feature fusion structure to retain more deep semantic information,which can effectively promote the classification and accurate location of the target.The addition of three-branch structure of TA mechanism can better extract the spatial interactive attention and channel spatial interactive attention,and suppress the useless feature information.Finally,using Soft NMS to replace the traditional NMS algorithm can effectively reduce the omission of the target and improve the accuracy of detection.Experimental data show that compared with the original YOLOv5s model,the accuracy rate of the improved YOLOv5s network model has been increased from 88.3%to 90%,the recall rate has been increased from 89%to 93%,and the mAP@0.5 value has been increased from 88.7%to 92.8%,which effectively improves the detection accuracy.

关 键 词:YOLOv5s模型 深度学习 注意力机制 目标检测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象