检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴欢 车贺宾[1,2] 王万玲 陈媛媛 李重勋[3] 张超 庄严 何昆仑 WU Huan;CHE Hebin;WANG Wanling;CHEN Yuanyuan;LI Zhongxun;ZHANG Chao;ZHUANG Yan;HE Kunlun(Medical Innovation Research Department of Chinese PLA General Hospital,Beijing 100853,China;National Engineering Research Center of Medical Big Data Application Technology,Beijing 100853,China;Goodwill Hessian Health Technology Co.Ltd.,Beijing 100085,China)
机构地区:[1]中国人民解放军总医院医学创新研究部,北京100853 [2]医疗大数据应用技术国家工程研究中心,北京100853 [3]北京嘉和海森健康科技有限公司,北京100085
出 处:《医学信息学杂志》2025年第2期22-28,共7页Journal of Medical Informatics
基 金:科技创新2030——“新一代人工智能”重大项目(项目编号:2021ZD0140406);北京市自然科学基金-海淀原始创新联合基金资助项目(项目编号:L222006)。
摘 要:目的/意义构建涵盖循证医学知识和电子病历数据的通用医学知识图谱,以提升图谱的应用效能。方法/过程梳理多源异构数据情况,融合国内外知名知识图谱,设计图谱schema。利用RoBERTa预训练模型进行词嵌入,从医学文献、网络文献、教科书、医学数据库和电子病历等数据源中提取命名实体和关系,采用基于规则的SWIQA框架和基于随机抽样的人工审核策略评价图谱质量。结果/结论共确定128个本体和1108种关系,并以三元组形式存储于数据库中。经评估,图谱语义准确性达93.8%。所构建的通用医学知识图谱不仅涵盖循证医学知识,还包括临床真实世界产生的专家经验,为医学人工智能应用的进一步发展提供了有力支撑。Purpose/Significance To construct a general medical knowledge graph covering evidence-based medical knowledge and electronic medical record(EMR)data,so as to improve the application effect of the graph.Method/Process The multi-source heterogeneous data are sorted out,the well-known knowledge graphs at home and abroad are integrated,the schema of the graphs is designed.The word embedding of RoBERTa pre-trained model is used to extract entities and relationships from medical literatures,network literatures,textbooks,medical databases and EMRs.The rule-based SWIQA framework and the manual audit strategy based on random sampling are used to evaluate the quality of the graph.Result/Conclusion A total of 128 ontologies and 1108 relationships are identified and stored in the database in the form of triples.The semantic accuracy of the atlas is 93.8%by evaluation.The general medical knowledge graph not only covers evidence-based medical knowledge,but also includes expert experience generated in the clinical real world,which can provide support for the further development of medical AI applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127