基于大数据的地铁通信信号故障预测与智能维护策略  

Fault Prediction and Intelligent Maintenance Strategy of Metro Communication Signal Based on Big Data

作  者:焦瑞金 JIAO Ruijin(Zhengzhou Rail Transit Operation Co.,Ltd.,Zhengzhou 450000,China)

机构地区:[1]郑州轨道交通运营有限公司,郑州450000

出  处:《移动信息》2025年第2期172-174,189,共4页Mobile Information

摘  要:随着地铁系统的日益复杂和运营规模的扩大,通信信号系统的稳定性和可靠性成为保障地铁安全、高效运行的关键.文中利用机器学习、数据挖掘和统计分析方法,构建了一个精准的故障预测模型.该模型能识别潜在的故障模式,提前预警潜在风险,从而有效避免通信信号系统发生故障.同时,结合智能维护策略,该系统能自动定位故障位置,实现远程监控和快速响应.With the increasing complexity of the subway system and the expansion of the operation scale,the stability and reliability of the communication signal system have become the key to ensure the safe and efficient operation of the subway.This paper uses machine learning,data mining and statistical analysis methods to build an accurate failure prediction model.The model can identify potential failure modes and warn latent risks in advance,thus effectively avoiding the failure of the communication signal system.At the same time,combined with intelligent maintenance strategies,the system can automatically locate the fault location,realize remote monitoring and quick response.

关 键 词:大数据 地铁通信 故障预测 智能维护 

分 类 号:U231.7[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象