检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xilin Bai Wei Deng Jingjuan Wang Ming Zhou
出 处:《Chinese Chemical Letters》2025年第2期428-432,共5页中国化学快报(英文版)
基 金:the financial support from the National Natural Science Foundation of China(No.21904007);the Fundamental Research Funds for the Central Universities(China,No.2412022QD008);the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China);the Analysis and Testing Center of Northeast Normal University(China)。
摘 要:The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.
关 键 词:Enrichment-enhanced detection strategy Optimizing pathway Improved sensitivity DOPAMINE Visual detection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.101.130