基于工业集群负荷DR潜力评估的电力市场策略研究  

Research on Power Market Strategy Based on Industrial Cluster Load DR Potential Assessment

作  者:张谦 蒋永梅 虞攀峰 ZHANG Qian;JIANG Yongmei;YU Panfeng(State Grid Zhejiang Electric Power Co.,Ltd.Zhoushan Power Supply Company,Zhejiang Zhoushan 316000,China)

机构地区:[1]国网浙江省电力有限公司舟山供电公司,浙江舟山316000

出  处:《农村电气化》2025年第2期61-66,共6页Rural Electrification

摘  要:以浙江省典型工业客户作为研究对象,分析了工业集群负荷参与需求响应的潜力,建立了需求响应模型;考虑聚合商参与电能量市场和调峰辅助服务市场的不确定性,以及中标概率、调用概率和短缺可能性,利用贝叶斯神经网络进行预测,建立了聚合商参与联合市场的竞标策略模型,通过最小化购电成本和最大化需求响应收益得到各时段内园区在现货市场的购电量,所建立的模型为工业集群和聚合商提供更准确、实用的决策依据,使市场参与者能够更明智地选择投标时间和容量,并考虑如何最小化电力短缺风险以及最大化总利润,为制定工业集群负荷聚合商参与电力市场的策略提供重要参考。Taking the typical industrial users of Zhejiang Province as the research object,the potential for participating in the demand response of industrial cluster loads is analyzed,and a demand response model has been established;considering the uncertainty of the aggregate participation in the electrical energy market and the peak adjustment assist service market,including the probability of winning bids,calling probability and shortage possibilities,and use Bayesian neural network to predict,establish a bidding strategy model for aggregates to participate in the joint market,and obtain the purchase of the park in the spot market in each period of time,through the minimum cost of electricity purchase and maximum demand response income,the power purchase volume of the park in the spot market in each period is obtained.The established model provides more accurate and practical decision-making basis for industrial clusters and aggregators,enabling market participants to choose bidding time and capacity more wisely.At the same time,it minimizes the risk of power shortage and maximize total profit,which provides important reference for formulating strategies for industrial cluster load aggregators to participate in the power market.

关 键 词:负荷预测 电力市场 用能管理 集群工业 

分 类 号:TM727[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象