检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程浈浈 张必详 程一帆 缪百灵 龚守富 CHENG Zhenzhen;ZHANG Bixiang;CHENG Yifan;MIAO Bailing;GONG Shoufu(College of Horticulture,Xinyang Agriculture and Forestry College,Xinyang,Henan 464399;College of Horticulture,Huazhong Agricultural University,Wuhan,Hubei 430070;College of Optoelectronic Information Engineering,Huazhong University of Science and Technology,Wuhan,Hubei 430074)
机构地区:[1]信阳农林学院园艺学院,河南信阳464399 [2]华中农业大学园艺学院,湖北武汉430070 [3]华中科技大学光电信息工程学院,湖北武汉430074
出 处:《北方园艺》2025年第5期131-140,共10页Northern Horticulture
基 金:河南省重点研发与推广专项(科技攻关)资助项目(232102111118)。
摘 要:以PlantVillage公开数据集的4种葡萄叶部病害为试材,提出了一种基于改进MobileNetV2模型的轻量化识别方法,该方法以轻量级MobileNetV2模型为基础,通过在模型瓶颈层中引入SE注意力机制,增强模型对关键特征的关注能力,从而进一步优化识别性能和减少模型参数数量,以期为实现病害的高精度诊断,同时有效降低计算资源需求提供参考依据。结果表明:改进后的模型在测试集上的识别准确率达97.5%,较原始MobileNetV2提升4.5%;与ResNet50、ResNet34和ShuffleNetV2模型相比,平均准确率分别提高10.2、18.7、28.2个百分点,且模型大小仅为20.7 MB,实现了模型运行成本和精确度的平衡,为葡萄叶部病害识别问题提供了解决方案。Taking four grape leaf diseases in the open data set of Plant Village as the test materials,a lightweight recognition method was proposed based on an improved MobileNetV2 model,aiming to achieve high-accuracy disease diagnosis while effectively reducing computational resource requirements.The method utilizes the lightweight MobileNetV2 framework and integrates the SE attention mechanism into the bottleneck layers,enhancing the model′s ability to focus on key features and further optimizing recognition performance while reducing the number of model parameters,in order to provide reference for the realization of high precision disease diagnosis,while effectively reducing the need for computing resourees.The results showed that the improved model achieved a recognition accuracy of 97.5%on the test set,which was 4.5%higher than the original MobileNetV2.Compared to ResNet50,ResNet34,and ShuffleNetV2,the proposed method improved the average accuracy by 10.2,18.7,and 28.2 percentage points,respectively,with a model size of only 20.7 MB.This study successfully balances computational cost and recognition accuracy,providing an effective solution for the challenge of grape leaf disease recognition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170