医学大模型幻觉问题及应对策略的研究与实践  

On the countermeasures to hallucination of medical large language model:literature review and experience synthesis

在线阅读下载全文

作  者:黄子扬 董超 姜会珍 李喆 李亚光 马琏 马丹丹 张新平 叶向阳 陈婕卿 周翔 Huang Ziyang;Dong Chao;Jiang Huizhen;Li Zhe;Li Yaguang;Ma Lian;Ma Dandan;Zhang Xinping;Ye Xiangyang;Chen Jieqing;Zhou Xiang(Department of Information Center,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College&State Key Laboratory of Complex Severe and Rare Diseases,Beijing 100730,China;Department of Critical Care Medicine,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College&State Key Laboratory of Complex Severe and Rare,Beijing 100730,China)

机构地区:[1]中国医学科学院、北京协和医学院、北京协和医院信息中心、疑难重症及罕见病全国重点实验室,北京100730 [2]中国医学科学院、北京协和医学院、北京协和医院重症医学科、疑难重症罕见病全国重点实验室,北京100730

出  处:《数字医学与健康》2025年第1期54-58,共5页DIGITAL MEDICINE AND HEALTH

摘  要:随着大语言模型发展和应用的不断深入,大模型幻觉所带来的问题日益显露,在医学领域尤其危险。如何更好地理解幻觉原因并予以减轻,对医学大模型落地和推广至关重要。本文通过文献综述和实践总结,围绕大模型幻觉来源、类型和评估等内容进行阐述,并讨论了在生成阶段、训练阶段可采取应对策略减轻大模型幻觉。实践证明,在医学场景中,检索增强生成(RAG)是减轻大模型幻觉的重要手段。医学大模型有广泛的应用前景,需持续创新不断减轻幻觉问题,提高大模型的准确性和计算性能,为推动医疗领域发展和实现健康中国战略作出更大贡献。With the development and application of large language models(LLMs),the problems caused by hallucinations in these models have become increasingly apparent,posing critical risks in the medical field.It is crucial to better understand the causes of hallucinations and find ways to mitigate them in order to facilitate the implementation and promotion of LLMs in the medical domain.Based on literature review and practical experience,this research aims to elaborate on the sources,types,and assessments of hallucinations in LLMs,with a particular focus on the countermeasures to mitigate hallucinations during the generation and training stages.It is proved that the retrieval-augmented generation is an important measure to be taken to that end.Medical LLMs have broad application prospects,but continuous innovation is required to mitigate hallucinations,improve the accuracy and computational performance of LLMs,and contribute to the advancement of the healthcare sector and the realization of the Healthy China strategy.

关 键 词:大语言模型 医学领域 大模型幻觉 检索增强生成 知识库 

分 类 号:R-05[医药卫生] R319

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象