检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁堃 夏铭谦 袁海 肖刚 马晓冉 彭子尧 李宇杰 LIANG Kun;XIAMingqian;YUAN Hai;XIAO Gang;MaXiaoran;PENGZiyao;LIYujie(State Key Laboratory of Precision Welding&Joining of Materials and Structures,Harbin Institute of Technology(Weihai),Weihai 264209,China;School of Materials Science and Engineering,Harbin Institute of Technology(Weihai),Weihai 264209,China;Xi'an Microelectronic Technique Institute,Xi'an 710000,China)
机构地区:[1]哈尔滨工业大学(威海)材料结构精密焊接与连接全国重点实验室,山东威海264209 [2]哈尔滨工业大学(威海)材料科学与工程学院,山东威海264209 [3]西安微电子技术研究所,陕西西安710000
出 处:《热科学与技术》2025年第1期96-104,共9页Journal of Thermal Science and Technology
基 金:山东省自然科学基金资助项目(ZR2021ME089);“十三五”装备预研专用技术资助项目(JZX2017-1501/Y395)。
摘 要:大功率系统级封装(system-in-package,SiP)封装密度高,对散热设计提出了很高的要求。低温共烧陶瓷作为常用的SiP基板材料,热导率较低,严重制约整体散热能力的提升。通过在基板中内置液冷微通道并构建贯穿陶瓷固体及微通道内腔的金属柱阵列结构,实现基板固体传热能力和固液换热能力的共同提升,并采用有限元方法对地面应用条件下的散热效果进行模拟。模拟过程中构建了与实际应用条件相应的电-热-质-力多物理场耦合仿真模型,通过薄膜近似技术和分离求解等方法解决仿真模型尺寸跨度大的问题,提升模拟精度并减小模拟计算量。通过对微通道金属柱阵列结构的设计和尺寸优化,确定了低温共烧陶瓷基板的优化设计方案,并通过研究微通道内流场分布以及整个SiP系统的温度分布,确定了应力集中的位置,为实物系统的制造和可靠性分析提供了理论依据。High-power SiP usually has high package density and requires highly efficient heat dissipation.As a commonly used substrate material for SiP,low-temperature co-fired ceramics(LTCC)has low thermal conductivity and seriously restricts the improvement of the overall heat dissipation capacity.In this work,a liquid-cooled microchannel was embedded in the substrate and a metal pillar array was constructed through the ceramic solid and microchannel cavities.Both the heat conduction of the solid substrate and the convective heat transfer of liquid in the microchannel were enhanced.Finite element method was used to simulate the heat dissipation process under ground application conditions.A multi-field coupling electro-thermo-hydro-mechanical simulation model was built corresponding to the actual application conditions.In order to solve the problem of large scale span,thin-film approximations and separate solvers were used,and the accuracy of simulation results was improved and the amount of calculation was greatly reduced.A practical design of the low-temperature co-fired ceramics substrate had been determined by optimizing the structure and size of the microchannel and the metal pillar array.Based on the flow field distribution in the microchannel and the temperature distribution of the SiP,the high stress concentration areas were discerned.These results provide a theoretical basis for the design,manufacture and reliability analysis of the SiP in practical work.
关 键 词:大功率系统级封装 低温共烧陶瓷 微通道 金属柱阵列 多物理场耦合仿真
分 类 号:TK172[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43