检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢昭 孟小军 袁晶晶 张迪 刘力 陈彦美 XING Zhao;MENG Xiao-jun;YUAN Jing-jing;ZHANG Di;LIU Li;CHEN Yan-mei(Resource and Environmental Engineering College,Yangtze University,Wuhan 430000,China;School of Environmental Studies,China University of Geosciences(Wuhan)/Wuhan Zhongdi Huanke Water Engineering Technology Consulting Co.,Ltd.,Wuhan 430000,China;The Seventh Geological Brigade of the Hubei Geological Bureau,Yichang 443000,China)
机构地区:[1]长江大学资源与环境学院,武汉430000 [2]中国地质大学(武汉)环境学院/武汉中地环科水工环科技咨询有限责任公司,武汉430000 [3]湖北省地质局第七地质大队,宜昌443000
出 处:《科学技术与工程》2025年第7期2712-2720,共9页Science Technology and Engineering
基 金:湖北省地质局第七地质大队(DZXM2022-1)。
摘 要:采用机器学习方法在长阳土家族自治县研究区进行滑坡危险性评价,能够为地质灾害防治工作提供科学合理的依据。通过历史滑坡点选取研究区12个评价指标(平面曲率、地形起伏度、地表粗糙度、坡度、植被覆盖度、工程岩组、距断裂带距离、距水系距离、降雨量、土地利用类型、距房屋距离和距道路距离)相关性分析后均被选用。计算因子信息量,联合支持向量机(support vector machine,SVM)和梯度提升决策树(gradient boosting decision tree,GBDT)模型构建研究区的评价模型,将研究区危险性分为极高、高、中和低四个等级,生成危险性分区,并对评价模型进行评估。结果表明:极高危险区主要分布于研究区的西南部、中部和东部;I-SVM和I-GBDT模型预测的极高危险区、高危险区、中危险区和低危险区的分区占比分别为15.86%、21.29%、33.51%、28.68%和30.08%、7.41%、13.28%、49.22%,I-SVM和I-GBDT模型AUC(area under curve)值分别0.859、0.829。结果表明I-SVM模型的预测危险性分区结果更合理可靠。Machine learning methods have been employed in the study area of Changyang Tujia Autonomous County for landslide hazard assessment,it could provide a scientific basis for geological disaster prevention and control efforts.Through the correlation analysis of 12 evaluation indicators(planar curvature,terrain undulation,surface roughness,slope,vegetation coverage,engineering lithology,distance to fault zone,distance to water system,rainfall,land use type,distance to buildings,and distance to roads)in the study area selected by historical landslide points,they were selected.And the evaluation model of the study area was constructed by calculating the information content of factors and integrate support vector machine(SVM)and gradient boosting decision tree(GBDT)models.The hazard of the study area was classified into four levels:extreme high,high,medium,and low,to generate hazard zoning.Subsequently,an assessment of the evaluation model was conducted.The results indicated that the very high hazard zone was mainly distributed in the southwest,central,and eastern parts of the research area.The distribution percentages of very high,high,medium,and low hazard zones predicted by the I-SVM and I-GBDT models were 15.86%,21.29%,33.51%,28.68%,and 30.08%,7.41%,13.28%,49.22%,respectively.The prediction of hazard zones by the I-SVM model aligned more closely with reality.The AUC values for the I-SVM and I-GBDT models were 0.859 and 0.829,respectively.The prediction of risk zones by the I-SVM model is deemed more reasonable and reliable.
关 键 词:滑坡 信息量 危险性评价 支持向量机 梯度提升决策树
分 类 号:P642.2[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.48.161