检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:国栋凯 张钦然 李小南 易黄建[1] GUO Dongkai;ZHANG Qinran;LI Xiaonan;YI Huangjian(School of Information Science and Technology,Northwest University,Xi'an 710127,Shaanxi,China;School of Mathematics and Statistics,Xidian University,Xi'an 710126,Shaanxi,China)
机构地区:[1]西北大学信息科学与技术学院,陕西西安710127 [2]西安电子科技大学数学与统计学院,陕西西安710126
出 处:《山东大学学报(理学版)》2025年第1期74-82,共9页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(61906154);陕西省教育厅青年创新团队资助项目(21JP123)。
摘 要:提出一种基于五区域阴影集的模糊C均值(fuzzy C-means,FCM)算法,利用FCM算法得到对象簇的隶属度,引入五区域阴影集,将对象划分为核心区域、次核心区域、阴影区域、次边缘区域和边缘区域,分析次核心区域得到阈值ω,通过核心区域和次核心区域中隶属度μ≥ω的对象簇得到聚类结果,在8个公开数据集中进行实验。本文提出的算法相比于其余3种算法在7个数据集上取得了最佳的聚类结果。A fuzzy C-means(fuzzy C-means,FCM)clustering algorithm based on five-region shadowed sets is proposed in this paper.The membership degree of the object to the cluster is obtained by the FCM algorithm.The object is divided into core region,semi-core region,shadow region,semi-negative region and negative region according to the membership degree by introducing the five-region shadowed sets.Then,a threshold value ω is obtained by analyzing the semi-core region.The objects whose membership degree μ≥ω in the core region and semi-core region are classified into this cluster to get the final clustering result.Experiments are carried out on 8 public data sets with other 3 clustering algorithms,compared with the other 3 algorithms,the algorithm proposed in this paper achieves the best clustering results on 7 data sets.The experimental results show that the proposed algorithm in this paper is superior to 3 other algorithms.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166