检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宫飞翔 陈宋宋 罗鑫宇 李彬[3] GONG Feixiang;CHEN Songsong;LUO Xinyu;LI Bin(China Electric Power Research Institute Co.,Ltd.,Beijing 100192,China;Beijing Key Laboratory of Demand Side Multi-energy Complementary Optimization and Supply-Demand Interaction Technology,Beijing 100192,China;School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]中国电力科学研究院有限公司,北京100192 [2]需求侧多能互补优化与供需互动技术北京市重点实验室,北京100192 [3]华北电力大学电气与电子工程学院,北京102206
出 处:《电力需求侧管理》2025年第2期48-54,共7页Power Demand Side Management
基 金:国家电网有限公司科技项目(5108-202218280A-2-389-XG)。
摘 要:柔性负荷资源因其响应迅速和调节灵活的特点,能够在确保用户舒适度不受显著影响的前提下,迅速对电网调度作出反应。空调负荷作为柔性负荷的核心部分,可以通过科学的调控策略来削减高峰电力需求,进而缓解电力供应压力。鉴于空调负荷数据具有非线性和特征模糊等特性,提出了一种结合模态分解与神经网络的空调负荷预测模型。首先采用皮尔逊相关系数来构建相似的周负荷序列。随后运用自适应噪声完备集合经验模态分解与变分模态分解(variational mode decomposition,VMD)技术对负荷进行分解。在VMD环节,将原始时间序列信号输入VMD层,通过VMD算法将其分解为多个本征模函数(into multiple eigenmode functions,IMFs)。将这些IMFs分别输入卷积神经网络,通过卷积、激活和池化等操作提取其局部特征。之后这些特征向量被送入双向长短期记忆网络(BiLSTM),利用其双向传播能力来捕捉序列中的长期依赖性。并使用改进的鲸鱼算法优化超参数,最终在输出预测负荷序列的基础上,进一步探讨了负荷的调节潜力。实验结果显示,本方法不仅预测速度快、精度高,而且能更清晰地揭示负荷的调节潜力。Flexible load resources can respond to power grid dispatching quickly without significant impact on user comfort because of their rapid response and flexible regulation.As the core part of flexible load,air conditioning load can reduce the peak power demand through scientific control strategy,and then relieve the pressure of power supply.In view of the nonlinear and fuzzy characteristics of air conditioning load data,a model of air conditioning load prediction based on modal decomposition and neural network is proposed.First,Pearson correlation coefficients are used to construct similar weekly load sequences.Then the load is decomposed by adaptive noise complete set empirical mode decomposition and variational mode decomposition(VMD).In the VMD section,the original time series signal is input into the VMD layer and decomposed into multiple eigenmode functions(IMFs)by the VMD algorithm.These IMFs are input into convolutional neural network respectively,and their local features are extracted by convolutional,activation and pooling operations.These feature vectors are then fed into a bidirectional long short-term memory network,which uses its bidirectional propagation capability to capture long-term dependencies in the sequence.The improved whale algorithm is used to optimize the hyperparameters,and the regulation potential of the load is further discussed on the basis of the output forecast load sequence.The experimental results show that this method not only has high forecasting speed and accuracy,but also can reveal the adjustment potential of load more clearly.
关 键 词:柔性负荷 模态分解 鲸鱼算法 卷积神经网络 双向长短期记忆网络
分 类 号:TM714[电气工程—电力系统及自动化] TK018[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49