检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘升光 李宏升[1] 刘雅新 于杰 LIU Shengguang;LI Hongsheng;LIU Yaxin;YU Jie(School of Science,Qingdao University of Technology,Qingdao 266520,China;School of Physics,Dalian University of Technology,Dalian 116024,China)
机构地区:[1]青岛理工大学理学院,山东青岛266520 [2]大连理工大学物理学院,辽宁大连116024
出 处:《物理实验》2025年第2期39-45,共7页Physics Experimentation
摘 要:激光测水深实验中,传统方法处理实验数据时难以充分考虑水面波动、悬浮颗粒、光照变化和噪声等复杂的环境因素,实验结果误差较大.利用人工智能深度学习方法,建立卷积神经网络模型处理水底回波信号,从大量数据中提取有用信息、消除噪声并优化测量结果,从而显著提高水深测量的精度.In LiDAR bathymetry experiments,traditional methods often struggled to account fully for complex environmental factors,such as water surface fluctuations,suspended particles,changes in illumination,and sensor noise,leading to significant measurement errors.By applying artificial intelligence deep learning techniques,a convolutional neural network model was developed to process underwater echo signals.This enabled efficient extraction of valuable information from large datasets,noise suppression,and optimization of measurement outcomes.The proposed approach significantly enhanced the accuracy and reliability of water depth measurements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.235.50