改进灰狼优化LSSVM的高程异常拟合方法  

Improved Grey Wolf Optimization LSSVM Model for Elevation Anomaly Fitting

在线阅读下载全文

作  者:李鹏波 Li Pengbo(Xining Land Survey and Planning Institute Co.,Ltd.)

机构地区:[1]西宁市国土勘测规划研究院有限公司,西宁市810006

出  处:《勘察科学技术》2025年第1期16-20,共5页Site Investigation Science and Technology

摘  要:该文针对最小二乘支持向量机(LSSVM)中核函数参数与正则化系数的选择对高程异常拟合精度影响较大问题,通过引入混沌映射、非线性调整收敛因子及莱维飞行方法改进灰狼优化算法,提出改进灰狼优化LSSVM模型(IGWO-LSSVM)的高程异常拟合方法,为常规LSSVM提供最优核函数参数与正则化参数。分别以线状工程、面状工程两种典型工程的GNSS水准重合数据进行实验验证,结果表明:IGWO-LSSVM拟合方法的外符合精度较GWO-LSSVM拟合方法分别提高33%、19%,可为相关GNSS高程异常拟合工程提供一种参考。In response to the significant impact of the selection of kernel function parameters and regularization coefficients on the accuracy of height anomaly fitting in Least Squares Support Vector Machine(LSSVM)models,this paper proposes an improved Grey Wolf Optimization LSSVM(IGWO-LSSVM)algorithm for elevation anomaly fitting by incorporating chaotic mapping,nonlinear convergence factor adjustments and Lévy flight methods.This model optimizes kernel function parameters and regularization coefficients for conventional LSSVM.Experiments are conducted using overlapping GNSS leveling data from two typical engineering projects:linear and planar engineering.Results show that the external accuracy of the IGWO-LSSVM fitting method improves by 33%and 19%respectively than that of the GWO-LSSVM fitting method,providing reference for relevant GNSS elevation anomaly fitting engineering projects.

关 键 词:核函数参数 正则化参数 灰狼优化算法 最小二乘支持向量机 IGWO-LSSVM模型 高程异常拟合 

分 类 号:P228.4[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象