面向新型电力系统的含风光储配电网多目标调度方法  

A multi-objective scheduling method for wind and solar energy storage and distribution network facing novel power system

在线阅读下载全文

作  者:黄定威 王锋 李波 HUANG Dingwei;WANG Feng;LI Bo(Jiangmen Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Jiangmen 529000,Guangdong,China)

机构地区:[1]广东电网有限责任公司江门供电局,广东江门529000

出  处:《电测与仪表》2025年第3期38-45,共8页Electrical Measurement & Instrumentation

基  金:中国南方电网有限责任公司科技项目(030700KK52220032(GDKJXM20220910))。

摘  要:随着双碳目标和新型电力系统的提出,含分布式电源和储能配电网的调度方法成为研究热点。针对目前含风光储配电网多目标调度方法无法兼顾经济性、稳定性和环保性,文中通过最小化区域内配电网削峰填谷方差、综合经济成本和污染治理成本为优化多目标,建立含风光储的配电网削峰填谷多目标优化调度模型,通过改进多目标量子粒子群优化算法求解模型。通过算例分析验证所提方法的优越性。结果表明,与常规方法相比,所提方法具有较优的负荷削峰填谷方差、综合成本和污染治理成本,运算效率也较高,可为新型电力系统的构建提供一定助力。With the proposal of dual carbon goals and novel power system,scheduling methods including distribu-ted power generation and energy storage distribution network have become a research hotspot.The current multi-ob-jective scheduling method for wind and solar energy storage and distribution network cannot balance economic,sta-bility,and environmental friendliness,this paper establishes a multi-objective optimization scheduling model for peak shaving and valley filling in distribution network with wind and solar energy storage by minimizing the variance of peak shaving and valley filling,comprehensive economic costs,and pollution control costs within the region,the model is solved by improving the multi-objective quantum particle swarm optimization algorithm.The superiority of the proposed method is verified through case analysis.The results show that compared with conventional methods,the proposed method has better load peak shaving and valley filling variance,comprehensive cost,and pollution control cost,and higher computational efficiency,which can provide certain assistance for the construction of novel power system.

关 键 词:双碳目标 新型电力系统 风光储 配电网 削峰填谷 多目标优化调度模型 量子粒子群算法 

分 类 号:TM71[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象