检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:路晨辉 刘海涛[1] 王建华[1] LU Chenhui;LIU Haitao;WANG Jianhua(School of Mechatronic Engineering,Xi’an Technological University,Xi’an 710021,China)
出 处:《应用声学》2025年第2期505-512,共8页Journal of Applied Acoustics
基 金:陕西省智能制造科技重大专项(2019zdzx01-02-02)。
摘 要:磨削加工对现代智能制造业起着至关重要的作用。砂轮的磨损直接影响到被加工工件表面质量,而主要依靠经验判断可能会导致效率低下和成本昂贵的问题。该文提出一种基于声发射和支持向量机的插刀磨砂轮钝化状态监测方法,首先分析了不同砂轮磨损状态下的声发射信号,声发射信号时域均方根曲线和砂轮钝化能量的理论曲线划分砂轮钝化状态节点,对磨削插齿刀过程产生的时变非稳定声发射信号进行滤波去噪,避免实验条件对声发射信号的影响。利用小波包分解提取声发射信号各频段有效特征,并对有效特征的选择进行了对比分析,最终选择对多频段小波包能量系数和时域特征进行拼接特征融合,建立在小样本性能较优的多分类模型支持向量机。最终,砂轮钝化状态识别准确率可达91%,能够满足实际加工需求。Grinding process plays a crucial role for modern intelligent manufacturing industry,and the wear of grinding wheel directly affects the surface quality of the processed workpiece,while the grinding wheel wear mainly relies on empirical judgment is likely to lead to inefficiency and costly problems.In this paper,we propose a method for monitoring the passivation state of grinding wheels with inserted cutter based on acoustic emission(AE)and support vector machine(SVM).Firstly,we analyze the AE signals under different grinding wheel wear states,and the theoretical curves of the time-domain root mean square(RMS)curves of the AE signals and the passivation energy of the wheels are divided into nodes of the passivation state of the wheels,and we perform the filtering and denoising of time-varying and non-stationary AE signals generated by grinding inserted cutter to avoid the impacts of the experimental conditions on the AE signals.The wavelet packet decomposition is used to extract the effective features of each frequency band of the AE signal,and the selection of effective features is compared and analyzed,and the final choice of the multi-band wavelet packet energy coefficients and time-domain features are spliced feature fusion,and the multi-classification model SVM is established with better performance in the small samples.Eventually,the accuracy of grinding wheel passi vation state recognition is up to 91%,and it can meet the needs of actual processing.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49