考虑混合车流网联环境的城市干线交叉口协调优化设计  

Optimization Design of Urban Arterial Intersections Coordination Considering Mixed Traffic Network Environment

在线阅读下载全文

作  者:赵霞 张依 李之红 王强 Zhao Xia;Zhang Yi;Li Zhihong;Wang Qiang(School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)

机构地区:[1]北京建筑大学土木与交通工程学院,北京100044

出  处:《市政技术》2025年第3期87-92,共6页Journal of Municipal Technology

基  金:北京社会科学基金青年项目(24GLC064)。

摘  要:为优化混合车流网联环境下城市干线交叉口的通行性能,提升道路通行能力和安全性,提出了一种双层规划模型。该模型上层为引导速度模块,下层为信号配时模块,通过优化车辆在主干道上的连续通行量和平均延误水平,实现交通信号的精细协调控制。使用SUMO仿真软件对北京市大兴区兴华大街沿线的5个交叉口进行了实验验证。实验结果表明,随着网联自动驾驶车辆(CAV)渗透率的增加,车辆平均延误和行程时间均显著降低。其中,完全网联环境下的平均延误减少幅度超过55%。研究结果证明了双层规划模型在CAV渗透率提升下的显著优势,可为未来智能交通系统的干线交叉口管控提供有效的技术参考。In order to optimize the traffic performance of urban arterial intersections under mixed traffic network environment and improve road capacity and safety,a Bi-level programming model is proposed.The upper layer of the model is the guidance speed module and the lower layer is the signal timing module,which realizes the fine coordinated control of traffic signals by optimizing the continuous passage and delay level of vehicles on the trunk road.Experimental verification was carried out on five intersections along Xinghua Street in Daxing District,Beijing by SUMO simulation software.The experimental results show that the average vehicle delay and travel time are significantly reduced with the increase of the penetration rate of connected and autonomous vehicles(CAVs).And the average delay reduction in the fully connected environment is more than 55%.The results demonstrate the significant advantages of the Bi-level programming model under CAV penetration increase,which can provide an effective technical reference for arterial intersection control of intelligent transportation systems in future.

关 键 词:网联环境 SUMO仿真 混合车流 网联自动驾驶车辆 干线信号协调控制 

分 类 号:U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象