检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈以[1,2] 齐兴宇 胡水源 姚宇琛 CHEN Yi;QI Xing-yu;HU Shui-yuan;YAO Yu-chen(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;Guangxi University Key Laboratory of Intelligent Comprehensive Automation,Guilin Guangxi 541004,China)
机构地区:[1]桂林电子科技大学电子工程与自动化学院,广西桂林541004 [2]广西智能综合自动化高校重点实验室,广西桂林541004
出 处:《计算机仿真》2025年第1期126-132,共7页Computer Simulation
基 金:广西高校中青年教师科研基础能力提升项目(2019KY0225);广西自动检测技术与仪器重点实验室主任基金立项项目(YQ19107)。
摘 要:针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用变分模态分解(Variational Modal Decomposition, VMD)将交通流分解,借助样本熵(Sample Entropy, SE)将子序列重组,得到趋势、细节和随机分量并采用相空间重构算法(Phase Space Reconstruction, PSR)对其进行处理。通过4个基准函数验证IDOA算法性能。对重构后的分量分别建立IDOA-LSSVM,IDOA-LSTM以及IDOA-XGBoost三个子模型,叠加各子模型的预测值得到预测结果。实验结果表明:其它预测模型相比,上述模型预测精度均有不同程度的提升,输出的预测结果更接近真实值。A multi-stage optimization strategy and an Improved Dingo Optimization Algorithm(IDOA)are proposed to optimize the combined prediction model with LSSVM,LSTM and XGBoost parameters,which is called MOIDOA-LLX and is able to address the problem of low accuracy of short-time traffic flow prediction due to the randomness and nonlinearity of traffic flow data.The traffic flow is decomposed using Variational Modal Decomposition(VMD)and the subsequence is reorganized with the help of Sample Entropy(SE)to obtain the trend,detail and stochastic components and to reconstruct the traffic flow using Phase Space Reconstruction(PSR)algorithm.The performance of the IDOA algorithm is verified by four benchmark functions.Three sub-models,IDOA-LSSVM,IDOALSTM and IDOA-XCBoost,are built for each reconstructed component,and the prediction results are obtained by superimposing the prediction values of each sub-model.The experimental results show that compared with other prediction models,the prediction accuracy of our model has different degrees of improvement,and the output prediction results are closer to the real values.
关 键 词:短时交通流预测 组合预测模型 改进澳洲野狗优化算法 变分模态分解 样本熵
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222